Skip to main content
Log in

Solvent-related effects in MAPLE mechanism

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To study the role of the solvent and of the laser fluence in the matrix-assisted pulsed laser evaporation (MAPLE) process, we used a soft polymer (polydimethylsiloxane—PDMS) as “sensing surface” and toluene as solvent. Thin films of the PDMS polymer were placed in the position of the growing film, while a frozen toluene target was irradiated with an ArF laser at the conventional fluences used in MAPLE depositions (60–250 mJ/cm2). Apart the absence of solute, the MAPLE typical experimental conditions for the deposition of thin organic layers were tested. The effects on the PDMS films of the toluene target ablation, at different fluences, were studied using atomic force microscopy and contact angles measurements. The results were compared with the effects produced on similar PDMS films by four different treatments (exposure to a drop of the solvent, to saturated toluene vapors and to plasma sources of two different powers). From this comparative study, it appears that depending on the MAPLE experimental conditions: (1) the MAPLE process may be “semidry” rather than purely dry (namely the solvent is likely to be present in the deposition environment near the growing film), (2) the solvent, if sufficiently volatile, is in form of vapor molecules (neutral, ionized and probably dissociated) rather than in liquid phase near the substrate and (3) at relatively high laser fluences (>150 mJ/cm2), the formation of an intense plasma plume results which can damage/affect a soft substrate as well as a growing polymer film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Cho, S. Song, Y. Ji, T.-W. Kim, T. Lee, Adv. Funct. Mater. 21, 2806 (2011)

    Article  Google Scholar 

  2. H. Sirringhaus, Adv. Mater. 17, 2411 (2005)

    Article  Google Scholar 

  3. J. Shinar, R. Shinar, J. Phys. D Appl. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  4. G. Witte, C. Wöll, J. Mater. Res. 19, 1889 (2004)

    Article  ADS  Google Scholar 

  5. Y. Fujii, H. Atarashii, M. Hino, T. Nagamura, K. Tanaka, Appl. Mater. Interfaces 1, 1856 (2009)

    Article  Google Scholar 

  6. A.L. Layzner, C.J. Tassone, S.H. Tolbert, B.J. Schwartz, J. Phys. Chem. C 113, 20050 (2009)

    Article  Google Scholar 

  7. X. Zhang, J.F. Douglas, R.L. Jones, Soft Matter, Mar. 21, (2012). doi:10.1039/C2SM07308K

  8. R. Srinivasan, V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982)

    Article  ADS  Google Scholar 

  9. Y. Kawamura, K. Toyoda, S. Namba, Appl. Phys. Lett. 40, 374 (1982)

    Article  ADS  Google Scholar 

  10. R. Srinivasan, B. Braren, Chem. Rev. 89, 1303 (1989)

    Article  Google Scholar 

  11. D. Bauerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Book  Google Scholar 

  12. S. Lazare, V. Granier, Laser Chem. 10, 25 (1989)

    Article  Google Scholar 

  13. T. Lippert, J.T. Dickinson, Chem. Rev. 103, 453 (2003)

    Article  Google Scholar 

  14. T. Lippert, in Polymers and Light, vol. 168, ed. by T. Lippert (Springer, Berlin, 2004), p. 51

    Chapter  Google Scholar 

  15. P.E. Dyer, in Photochemical Processing of Electronic Materials, ed. by I.W. Boyd, R.B. Jackman (Academic, London, 1992), p. 360

    Google Scholar 

  16. N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103, 519 (2003)

    Article  Google Scholar 

  17. T. Lippert, Plasma Process. Polym. 2, 525 (2005)

    Article  Google Scholar 

  18. N. Bityurin, Annu. Rep. Progr. Chem. C 101, 216 (2005)

    Article  Google Scholar 

  19. D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)

    Article  Google Scholar 

  20. A. Piqué, P.K. Wu, B.R. Ringeisen, D.M. Bubb, J.S. Melinger, R.A. McGill, D.B. Chrisey, Appl. Surf. Sci. 186, 408 (2002)

    Article  ADS  Google Scholar 

  21. A.P. Caricato, M. Lomascolo, A. Luches, F. Mandoj, M.G. Manera, M. Mastroianni, M. Martino et al., Appl. Phys. A Mater. Sci. Process. 93, 651 (2008)

    Article  ADS  Google Scholar 

  22. A. Stanculescu, L. Vacareanu, M. Grigoras, M. Socol, G. Socol, F. Stanculescu, N. Preda, Appl. Surf. Sci. 257, 5298 (2011)

    Article  ADS  Google Scholar 

  23. B.R. Ringeisen, J. Callahan, P.K. Wu, A. Piqué, B. Spargo, R.A. McGill, M. Bucaro, H. Kim, D.M. Bubb, D.B. Chrisey, Langmuir 17, 3472 (2001)

    Article  Google Scholar 

  24. I.A. Paun, V. Ion, A. Moldovan, M. Dinescu, App. Phys. Lett. 96, 243702 (2010)

    Article  ADS  Google Scholar 

  25. C.S. Ciobanu, S.L. Iconaru, E. Gyorgy, M. Radu, M. Costache, A. Dinischiotu, P. Le Coustumer, K. Lafdi, D. Predoi, Chem. Cent. J. 6, 17 (2012)

    Article  Google Scholar 

  26. Y. Guo, A. Morozov, D. Schneider, J.W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C.B. Arnold, R.D. Priestley, Nat. Mater. 11, 337 (2012)

    Article  ADS  Google Scholar 

  27. T.M. Patz, A. Doraiswamy, R.J. Narayan, N. Menegazzo, C. Kranz, B. Mizaikoff, Y. Zhong, R. Bellamkonda, J.D. Bumgardner, S.H. Elder, X.F. Walboomers, R. Modi, D.B. Chrisey, Mater. Sci. Eng. C 27, 514 (2007)

    Article  Google Scholar 

  28. V. Califano, F. Bloisi, L.R.M. Vicari, P. Colombi, E. Bontempi, L.E. Depero, Appl. Surf. Sci. 254, 7143 (2008)

    Article  ADS  Google Scholar 

  29. A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, M. Girtan, F. Stanculescu, Appl. Phys. A 104, 921 (2011)

    Article  ADS  Google Scholar 

  30. N.B. Ukah, D. Adil, J. Granstrom, R.K. Gupta, K. Ghosh, S. Guha, Org. Electron. 12, 1580 (2011)

    Article  Google Scholar 

  31. A.P. Caricato, M. Cesaria, G. Gigli, A. Loiudice, A. Luches, M. Martino, V. Resta, A. Rizzo, A. Taurino, Appl. Phys. Lett. 100, 073306 (2012)

    Google Scholar 

  32. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)

    Article  Google Scholar 

  33. J. Hermann, A.L. Thomann, C. Boulmer-Leborgne, B. Dubreuil, M.L. De Giorgi, A. Perrone, A. Luches, I.N. Mihailescu, J. Appl. Phys. 77, 2928 (1995)

    Article  ADS  Google Scholar 

  34. E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)

    Article  ADS  Google Scholar 

  35. A.P. Caricato, A. Vantaggiato, D. Valerini, A. Cretì, M. Lomascolo, M.G. Manera, R. Rella, M. Anni, G. Leggieri, M. Martino, Appl. Phys. A 101, 759–764 (2010)

    Article  ADS  Google Scholar 

  36. O. Kokkinaki, S. Georgiou, Dig. J. Nanomater. Biostruct. 2, 221 (2007)

    Google Scholar 

  37. N. Bowden, W.T.S. Huck, K.E. Paul, G.M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999)

    Article  ADS  Google Scholar 

  38. V. Arima, M. Bianco, A. Zacheo, A. Zizzari, E. Perrone, L. Marra, R. Rinaldi, Thin Solid Films 520, 2293 (2012)

    Article  ADS  Google Scholar 

  39. K. Rubahn, J. Ihlemann, G. Jakopic, A.C. Simonsen, H.-G. Rubahn, Appl. Phys. A 79, 1715–1719 (2004)

    Article  ADS  Google Scholar 

  40. N. Ikeda, N. Nakashima, K. Yoshihara, J. Chem. Phys. 82, 5285 (1985)

    Article  ADS  Google Scholar 

  41. K. Tsougeni, G. Boulousis, E. Gogolides, A. Tserepi, Microelectron. Eng. 85, 1233 (2008)

    Article  Google Scholar 

  42. K. Tsougeni, A. Tserepi, G. Boulousis, V. Constantoudis, E. Gogolides, Jpn. J. Appl. Phys. 46, 744 (2007)

    Article  ADS  Google Scholar 

  43. K. Tsougeni, A. Tserepi, G. Boulousis, V. Constantoudis, E. Gogolides, Plasma Process. Polym. 4, 398 (2007)

    Article  Google Scholar 

  44. A. Tserepi, E. Gogolides, K. Tsougeni, V. Constantoudis, E.S. Valamontes, J. Appl. Phys. 98, 113502 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank A. Luches for helpful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Caricato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caricato, A.P., Arima, V., Cesaria, M. et al. Solvent-related effects in MAPLE mechanism. Appl. Phys. B 113, 463–471 (2013). https://doi.org/10.1007/s00340-013-5491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5491-5

Keywords

Navigation