Skip to main content
Log in

Coherent magnetic vortex motion in optically formed channels for easy flow in YBa2Cu3O7−x superconducting thin films

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report our results of investigation of electric and magnetic properties of partially oxygen-depleted channels for easy vortex motion in YBa2Cu3O7−x (YBCO) superconducting, 50-μm-wide, and 100-μm-long microbridges at temperatures below the onset of the superconducting state critical temperature T onc . The channels were produced by means of a laser-writing technique. The writing was performed using a 0.1–0.3 W power, continuous-wave laser radiation focused down to a ~ 5 μm spot on the surface of a superconducting film in a nitrogen gas atmosphere, and resulted in perpendicular stripes (channels) with partial (x ~ 0.2) reduction of the oxygen content in the YBCO stripe. The oxygen-depleted channels exhibit a depressed T c and lower both the critical current density and the first critical magnetic field, as compared with the laser-untreated areas. The bias current applied to the bridge self-produced a magnetic flux that penetrated the channels in a form of Abrikosov magnetic vortices that, subsequently, moved coherently (a quasi-Josephson effect) along the channels in the narrow temperature range of 0.943 T onc –0.98 T onc and manifested themselves as steps on the current–voltage characteristics of our microbridges. Our results demonstrate that laser-induced formation of artificial channels of the flux flow can be used for a precise control of vortex nucleation and their coherent motion in pre-assigned regions of thin-film YBCO devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Proyer, E. Stangl, P. Schwab, D. Bäuerle, P. Simon, C. Jordan, Appl. Phys. A 58, 471 (1994)

    Article  ADS  Google Scholar 

  2. N. Curtz, E. Koller, H. Zbinden, M. Decroux, L. Antognazza, O. Fischer, N. Gisin, Supercond. Sci. Technol. 23, 045015 (2010)

    Article  ADS  Google Scholar 

  3. Y. Hatefi, R. Malekfar, Supercond. Sci. Technol. 17, 155 (2004)

    Article  ADS  Google Scholar 

  4. R. Sobolewski, W. Xiong, W. Kula, W.N. Maung, D.P. Butler, Supercond. Sci. Technol. 7, 300 (1994)

    Article  ADS  Google Scholar 

  5. R. Sobolewski, W. Xiong, W. Kula, IEEE Trans. Appl. Supercond. 3(1), 2986 (1993)

    Article  ADS  Google Scholar 

  6. M.Z. Cieplak, S. Guha, S. Vadlamannati, T. Giebultowicz, P. Lindenfeld, Phys. Rev. B 50(17), 12876 (1994)

    Article  ADS  Google Scholar 

  7. M. Tinkham, Introduction to superconductivity, international series in pure and applied physics (McGraw-Hill, New York, 1975)

    Google Scholar 

  8. W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  9. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36(1), 39 (1964)

    Article  ADS  Google Scholar 

  10. G. P. Mikitik, E. H. Brandt: Phys. Rev. B 79, 020506(R) (2009)

  11. J.H. Durrell, N.A. Rutter, Supercond. Sci. Technol. 22, 1 (2009)

    Article  Google Scholar 

  12. M. Hawley, I.D. Raistrick, J.G. Beery, R.H. Houlton, Science 251(5001), 1587 (1991)

    Article  ADS  Google Scholar 

  13. A. Jukna: J. Phys. IV France 11, Pr11–151 (2001)

    Google Scholar 

  14. A. Jukna, A. Abrutis, A. Maneikis, S. Balevičius, U.O. Karlsson, J. Low Temp. Phys. 117(5/6), 1555 (1999)

    Article  ADS  Google Scholar 

  15. M. G. Blamire: J. Low Temp. Phys. 68 (5–6), 335 (1987) and references therein

  16. A. Reichhardt, C.J. Olson, F. Nori, Phys. Rev. Lett. 78(13), 2648 (1997)

    Article  ADS  Google Scholar 

  17. Y. Yuzhelevski, G. Jung, C. Camerlingo, M. Russo, M. Ghinovker, B. Ya, Shapiro. Phys. Rev. B 60(13), 9726 (1999)

    Article  ADS  Google Scholar 

  18. A. Abrutis, J.P. Sénateur, F. Weiss, V. Kubilius, V. Bigelytė, Z. Šaltytė, B. Vengalis, A. Jukna, Supercond. Sci. Technol. 10, 959 (1997)

    Article  ADS  Google Scholar 

  19. E.C. Jones, D.K. Christen, J.R. Thompson, R. Feenstra, S. Zhu, D.H. Lowndes, J.M. Phillips, M.P. Siegal, J.D. Budai, Phys. Rev. B 47, 8986 (1993)

    Article  ADS  Google Scholar 

  20. A. Jukna, I. Barboy, G. Jung, A. Abrutis, X. Li, D. Wang, R. Sobolewski, J. Appl. Phys. 99, 113902 (2006)

    Article  ADS  Google Scholar 

  21. I. Barboy, A. Jukna, G. Bareli, G. Jung, Physica C 470, S799 (2010)

    Article  ADS  Google Scholar 

  22. J. Zhang, T.L. Ho, J. Low Temp. Phys. 161, 325 (2010)

    Article  ADS  Google Scholar 

  23. H.H.B. Sun, G.J. Russell, K.N.R. Taylor, Physica C 241(3/4), 219 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A. J. wants to thank for part of financial support from EU SF project of No. VP1-2.2-ŠMM-09-V-01-005 and project of No. PRO-12070 of the Research Council of Lithuania. Work in Warsaw was supported in part by the European Regional Development Fund (Innovative Economy, POIG.01.01.02-00-108/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jukna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jukna, A., Steponavičienė, L., Plaušinaitienė, V. et al. Coherent magnetic vortex motion in optically formed channels for easy flow in YBa2Cu3O7−x superconducting thin films. Appl. Phys. B 113, 327–332 (2013). https://doi.org/10.1007/s00340-013-5484-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5484-4

Keywords

Navigation