Skip to main content

Advertisement

Log in

Nd:YAG laser ablation characteristics of thin CIGS solar cell films

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work reports that the ablation characteristics of thin CuIn1−x Ga x Se2 (CIGS) solar cell film differ significantly with elemental composition and laser pulse energy. From in situ shadowgraphs measured during Nd:YAG laser (1,064 nm) irradiation of CIGS films and crater morphologies, it was found that strong surface evaporation is dominant for low Ga concentration films of which band gap is well below the photon energy. As the band gap of CIGS film becomes close to or over the laser photon energy due to increased Ga content, surface absorption diminishes and at low laser energy, laser heating of the film plays an important role. It is demonstrated that for the CIGS films with Ga/(Ga + In) ratio being approximately over 0.2, the laser irradiation leads to solid phase removal of the film due to thermomechanical fracture at low laser energy but to ablative evaporation at elevated energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Sánchez-Aniorte, R. Barrio, A. Casado, M. Morales, J. Cárabe, J.J. Gandía, C. Molpeceres, Appl. Surf. Sci. 258, 9443 (2012)

    Google Scholar 

  2. P.-O. Westin, U. Zimmermann, M. Ruth, M. Edoff, Sol. Energy Mater. Sol. Cells 95, 1062 (2011)

    Article  Google Scholar 

  3. S. Haas, A. Gordijn, H. Stiebig, Prog. Photovoltaics 16, 195 (2008)

    Article  Google Scholar 

  4. S. Hermann, T. Dezhdar, N.-P. Harder, R. Brendel, M. Seibt, S. Stroj, J. Appl. Phys. 108, 114514 (2010)

    Article  ADS  Google Scholar 

  5. H. Schulte-Huxel, S. Blankemeyer, R. Bock, A. Merkle, S. Kajari-Schröder, R. Brendel, Sol. Energy Mater. Sol. Cells 106, 22 (2012)

    Google Scholar 

  6. C.B. Honsberg, F. Yun, A. Ebong, M. Taouk, S.R. Wenham, M.A. Green, Sol. Energy Mater. Sol. Cells 34, 117 (1994)

    Article  Google Scholar 

  7. T. Nakada, S. Shirakata, Sol. Energy Mater. Sol. Cells 95, 1463 (2011)

    Article  Google Scholar 

  8. P. Ortega, I. Martín, G. Lopez, M. Colina, A. Orpella, C. Voz, R. Alcubilla, Sol. Energy Mater. Sol. Cells 106, 80 (2012)

    Google Scholar 

  9. D. Kray, S. Hopman, A. Spiegel, B. Richerzhagen, G.P. Willeke, Sol. Energy Mater. Sol. Cells 91, 1638 (2007)

    Article  Google Scholar 

  10. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics 19, 894 (2011)

    Article  Google Scholar 

  11. M. Powalla, D. Hariskos, E. Lotter, M. Oertel, J. Springer, D. Stellbogen, B. Dimmler, R. Schaffier, Thin Solid Films 431–432, 523 (2003)

    Article  Google Scholar 

  12. P.-O. Westin, U. Zimmermann, M. Edoff, Sol. Energy Mater. Sol. Cells 92, 1230 (2008)

    Article  Google Scholar 

  13. F.J. Pern, L. Mansfield, S. Glynn, B. To, C. DeHart, S. Nikumb, C. Dinkel, M. Rekow, R. Murison, T. Panarello, C. Dunsky, in IEEE Proceedimgs of 35th Photovoltaic Specialists Conference, 2010, p. 3479

  14. A.D. Compaan, I. Matulionis, S. Nakade, Opt. Lasers Eng. 34, 15 (2000)

    Article  Google Scholar 

  15. P. Gečys, G. Račiukaitis, M. Ehrhardt, K. Zimmer, M. Gedvilas, Appl. Phys. A-Mater. Sci. Process. 101, 373 (2010)

    Article  ADS  Google Scholar 

  16. T.W. Kim, H.J. Pahk, H.K. Park, D.J. Hwang, C.P. Grigoropoulos, in SPIE Proceedings, 2009, vol. 7409, p. 74090A

  17. S.H. Lee, H.S. Shim, C.K. Kim, J.H. Yoo, R.E. Russo, S.H. Jeong, Appl. Opt. 51, B115 (2012)

    Article  Google Scholar 

  18. S.H. Lee, C.K. Kim, J.H. In, H.S. Shim, S.H. Jeong, J. Phys. D Appl. Phys. 46, 105502 (2013)

    Google Scholar 

  19. S.H. Kwon, D.Y. Lee, B.T. Ahn, J. Korean Phys. Soc. 39(4), 655 (2001)

    Google Scholar 

  20. S.H. Jeong, R. Greif, R.E. Russo, J. Phys. D Appl. Phys. 32, 2578 (1999)

    Article  ADS  Google Scholar 

  21. Landolt-Börnstein, Group III Condensed Matter, Copper Indium Selenide (CuInSe 2 ) Thermal Expansion, Debye Temperature, Melting Point and Other Lattice Parameters, vol. 41E. (Springer, Berlin, 2000)

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0029850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Kim, C.K., In, J.H. et al. Nd:YAG laser ablation characteristics of thin CIGS solar cell films. Appl. Phys. B 113, 403–409 (2013). https://doi.org/10.1007/s00340-013-5477-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5477-3

Keywords

Navigation