Skip to main content
Log in

A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration. This instrument takes advantage of recent technology in thermoelectrically cooled pulsed Fabry–Perot (FP) quantum cascaded (QC) laser driving in a pulse mode operating at 7.5 μm to monitor a well-isolated spectral line near the ν4 fundamental band of CH4. A high-quality liquid nitrogen cooled mercury cadmium telluride mid-infrared detector with time discriminating electronics is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 × 10−3 under experimental condition of 200 ppm measured ambient CH4. The instrument operates continuously, and integrated software for laser control using direct absorption provides quantitative trace gas measurements without calibration. One may substitute a QC laser operating at a different wavelength to measure other gases. The instrument can be applied to field measurements of gases of environmental concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Svanberg, Chemical sensing with laser spectroscopy. Sens. Actuators B Chem. 33, 1–4 (1996)

    Article  Google Scholar 

  2. P. Bousquet, P. Ciais, J.B. Miller, E.J. Dlugokencky, D.A. Hauglustaine, C. Prigent, G.R. Van der Werf, P. Peylin, E.G. Brunke, C. Carouge, R.L. Langenfelds, J. Lathiere, F. Papa, M. Ramonet, M. Schmidt, L.P. Steele, S.C. Tyler, J. White, Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443 (2006)

    Article  ADS  Google Scholar 

  3. K.M. Walter, S.A. Zimov, J.P. Chanton, D. Verbyla, F.S. Chapin, Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006)

    Article  ADS  Google Scholar 

  4. L. Gianfrani, A. Sasso, G.M. Tino, Monitoring of O2 and NO2 using tunable diode lasers in the near-infrared region. Sens. Actuators B Chem. 39, 283–285 (1997)

    Article  Google Scholar 

  5. M.L. Cong, S.X. Guo, Y.D. Wang, A novel methane detection system based on InGaAsP distributed feedback laser. Opt. Appl. 41, 639–648 (2011)

    Google Scholar 

  6. C. Massie, G. Stewart, G. McGregor, J.R. Gilchrist, Design of a portable optical sensor for methane gas detection. Sens.Actuators B Chem. 113, 830–836 (2006)

    Article  Google Scholar 

  7. M.B. Filho, M.G. da Silva, M.S. Sthel, D.U. Schramm, H. Vargas, A. Miklos, P. Hess, Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy. Appl. Opt. 45, 4966–4971 (2006)

    Article  ADS  Google Scholar 

  8. A. Fried, G. Diskin, P. Weibring, D. Richter, J.G. Walega, G. Sachse, T. Slate, M. Rana, J. Podolske, Tunable infrared laser instruments for airborne atmospheric studies. Appl. Phys. B Lasers Opt. 92, 409–417 (2008)

    Article  ADS  Google Scholar 

  9. G. Stewart, C. Tandy, D. Moodie, M.A. Morante, F. Dong, Design of a fibre optic multi-point sensor for gas detection. Sens. Actuators B Chem. 51, 227–232 (1998)

    Article  Google Scholar 

  10. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 1, 014001 (2007)

  11. C. Mitscherling, J. Lauenstein, C. Maul, A.A. Veselov, O.S. Vasyutinskii, K.H. Gericke, Non-invasive and isotope-selective laser-induced fluorescence spectroscopy of nitric oxide in exhaled air. J. Breath Res. 1, 026003 (2007)

  12. A. Castrillo, G. Casa, L. Gianfrani, Oxygen isotope ratio measurements in CO2 by means of a continuous-wave quantum cascade laser at 4.3 mu m. Opt. Lett. 32, 3047–3049 (2007)

    Article  ADS  Google Scholar 

  13. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  14. T.T. Lin, L.Y. Ying, H. Hirayama, Threshold current density reduction by utilizing high-Al-composition barriers in 3.7 THz GaAs/AlxGa1-xAs quantum cascade lasers. Appl. Phys. Express 5, 012101 (2012)

    Google Scholar 

  15. A. Tredicucci, F. Capasso, C. Gmachl, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, High performance interminiband quantum cascade lasers with graded superlattices. Appl. Phys. Lett. 73, 2101–2103 (1998)

    Article  ADS  Google Scholar 

  16. D.D. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 60, 3325–3335 (2004)

    Article  ADS  Google Scholar 

  17. J. Faist, F. Capasso, D.L. Sivco, L. Hutchinson, C. Sirtori, S.N.G. Chu, A.Y. Cho, Quantum cascade laser: temperature-dependence of the performance-characteristics and high T0 operation. Appl. Phys. Lett. 65, 2901–2903 (1994)

    Article  ADS  Google Scholar 

  18. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 23, 219–221 (1998)

    Article  ADS  Google Scholar 

  19. A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser. Opt. Lett. 24, 1762–1764 (1999)

    Article  ADS  Google Scholar 

  20. J.B. McManus, M.S. Zahniser, D.D. Nelson, Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt. 50, A74–A85 (2011)

    Article  ADS  Google Scholar 

  21. B. Tuzson, M.J. Zeeman, M.S. Zahniser, L. Emmenegger, Quantum cascade laser based spectrometer for in situ stable carbon dioxide isotope measurements. Infrared Phys. Technol. 51, 198–206 (2008)

    Article  ADS  Google Scholar 

  22. C. Roller, A.A. Kosterev, F.K. Tittel, K. Uehara, C. Gmachl, D.L. Sivco, Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser. Opt. Lett. 28, 2052–2054 (2003)

    Article  ADS  Google Scholar 

  23. H. Gupta, L.S. Fan, Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen. Ind. Eng. Chem. Res. 42, 2536–2543 (2003)

    Article  Google Scholar 

  24. C.K. Ho, A. Robinson, D.R. Miller, M.J. Davis, Overview of sensors and needs for environmental monitoring. Sensors 5, 4–37 (2005)

    Article  Google Scholar 

  25. S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001)

    Article  Google Scholar 

  26. D.F. Luo, J.H. Yang, C.G. Zhong, Detection technology of methane gas concentration based on infrared absorption spectrum. Spectrosc. Spectr. Anal. 31, 384–386 (2011)

    Google Scholar 

  27. P. Dutronc, C. Lucat, F. Menil, M. Loesch, L. Combes, A new approach to selectivity in methane sensing. Sens. Actuators B Chem 15, 24–31 (1993)

    Article  Google Scholar 

  28. K. Chan, H. Ito, H. Inaba, Remote-sensing system for near-infrared differential absorption of Ch4 gas-using low-loss optical fiber link. Appl. Opt. 23, 3415–3420 (1984)

    Article  ADS  Google Scholar 

  29. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2003)

    Article  ADS  Google Scholar 

  30. F.Q. Liu, Q.S. Zhang, Y.Z. Zhang, D. Ding, B. Xu, Z.G. Wang, Growth and characterization of InGaAs/InAlAs quantum cascade lasers. Solid State Electron. 45, 1831–1835 (2001)

    Article  ADS  Google Scholar 

  31. C. Chen, H. Jian-qiang, L. Mo, D. Jing-min, W. Yi-ding, High-precision narrow pulse drive power for infrared quantum cascade laser. J. Jilin Univ. 41, 5 (2011)

    Google Scholar 

  32. C. Chen, L. Li, C. Dong, H. Yu, Y. Wang, Semiconductor Laser High-precision Temperature Control System Basing on Digital Signal Processing. Presented at the 2010 International Conference on Electrical and Control Engineering, Wuhan, China, 2010

  33. L. Wang, S. Kassi, A. Campargue, Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (I) The region of the 2 nu(3) band at 1.66 mu m. J. Quant. Spectrosc. Radiat. Transfer 111, 1130–1140 (2010)

    Article  ADS  Google Scholar 

  34. W.L. Ye, C.T. Zheng, X. Yu, C.X. Zhao, Z.W. Song, Y.D. Wang, Design and performances of a mid-infrared CH(4) detection device with novel three-channel-based LS-FTF self-adaptive denoising structure. Sens. Actuators B Chem. 155, 37–45 (2011)

    Article  Google Scholar 

  35. Texas Instruments, Low-Power, Single-Supply, CMOS Instrumentation Amplifier. INA2331 datasheet, 2001

  36. MAXIM, 4th and 8th Order Continuous Time Active Filter. MAX275 datasheet, 1996

  37. Analog Devices, Low Noise, Precision, High Speed Operational Amplifier. OP37 datasheet, 2002

  38. Analog Devices, Monolithic Peak Detector with Reset-and-Hold Mode. PKD01 datasheet, 2001

  39. Analog Devices, CMOS 24-Bit Sigma-Delta Analog-to-Digital Converter. AD7714 datasheet, 1998

  40. W.C. Lai, S. Chakravarty, X.L. Wang, C.Y. Lin, R.T. Chen, On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 36, 984–986 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National High Technology Research and Development Program of China, No. 2007AA03Z112, by the Program of Ministry of Education of China, No. 20060183030, by the Program of Jilin Provincial Science and Technology Department of China, No. 20070709, and by the Program of Bureau of Science and Technology of Changchun City, No. 2007107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiding Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Newcomb, R.W. & Wang, Y. A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 μm. Appl. Phys. B 113, 491–501 (2013). https://doi.org/10.1007/s00340-013-5473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5473-7

Keywords

Navigation