Skip to main content
Log in

A flexible wideband bandpass terahertz filter using multi-layer metamaterials

Applied Physics B Aims and scope Submit manuscript

Abstract

We make a flexible wideband bandpass filter at terahertz (THz) frequencies using multi-layer metamaterials. A very flat response in the passband can be obtained since the Fabry–Perot reflection inside the rigid substrate is eliminated. The center frequency is about 0.89 THz with a 3 dB bandwidth of 0.69 THz for normal incidence. The sharp band-edge transitions are 53 and 70 dB/THz to the rejection bands, respectively. The measured average insertion loss is 1.4 dB with a ripple of 0.8 dB. Furthermore, the transmission feature is insensitive to the polarization of incident wave due to the symmetric structure of the unit cell of the metamaterials. Also, it has a small change as the increase of the curvature of the flexible substrate. This result manifests that the multi-layer metamaterials can provide an effective way to design wideband THz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, M. Koch, J. Schoebel, T. Kürner, TEEE Trans. Antennas Propag. 49, 24–29 (2007)

    Article  ADS  Google Scholar 

  2. D.J. Love, R.W. Heath, V.K.N. Lau, D. Gesbert, B.D. Rao, M. Andrews, TEEE J. Sel. Area. Commun. 26, 1341–1365 (2008)

    Article  Google Scholar 

  3. T. Nagatsuma, IEICE Electron. Express 8, 1127–1142 (2011)

    Article  Google Scholar 

  4. R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, T. Kürner, TEEE Trans. Antennas Propag. 55, 3002–3009 (2007)

    Article  ADS  Google Scholar 

  5. H.J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, Y. Kado, Electron. Lett. 45, 1121–1122 (2009)

    Article  Google Scholar 

  6. J. Federici, L. Moeller, J. Appl. Phys. 107, 111101–111121 (2010)

    Article  ADS  Google Scholar 

  7. H.J. Song, T. Nagatsuma, TEEE Trans. Terahertz Sci. Technol. 1, 256–262 (2011)

    Article  Google Scholar 

  8. T.K. Leine-Ostmann, T. Nagatsuma, J. Infrared Millim. Terahertz Waves 32, 143–171 (2011)

    Article  Google Scholar 

  9. Y. Chen, X. Wang, F. Ye, P.F. Lee, B. Hu, Appl. Phys. B Lasers Opt. 107, 771–778 (2012)

    Article  ADS  Google Scholar 

  10. C.Y. Huang, M.H. Weng, R.Y. Yang, Y.K. Su, IEEE Microw. Wireless Compon. Lett. 17, 510–512 (2007)

    Article  Google Scholar 

  11. T. Walbaum, C. Fallnich, Appl. Phys. B Lasers Opt. 108, 117–124 (2012)

    Article  ADS  Google Scholar 

  12. Y.L. Wu, C. Liao, X.Z. Xiong, Prog. Electromagn. Res. 104, 141–153 (2010)

    Article  Google Scholar 

  13. S. Genovesi, T. Yen, A. Monorchio, E. Prati, Y. Chiang, F. Costa, in Proceedings of XXXth URSI General Assembly and Scientific Symposium, pp. 1–49 (2011)

  14. J.G. Han, J.Q. Gu, X.C. Lu, M.X. He, Q.R. Xing, W.L. Zhang, Opt. Express 17, 16527–16534 (2009)

    Article  ADS  Google Scholar 

  15. Y.J. Chiang, C.S. Yang, Y.H. Yang, C.L. Pan, T.J. Yen, Appl. Phys. Lett. 99, 191909-3 (2011)

    ADS  Google Scholar 

  16. M. Al-Joumayly, N. Behdad, IEEE Trans. Antennas Propag. 57, 452–459 (2009)

    Article  Google Scholar 

  17. O. Paul, R. Beigang, M. Rahm, Opt. Express 17, 18590–18595 (2009)

    Article  ADS  Google Scholar 

  18. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, M.W. Takeda, Appl. Phys. Lett. 96, 081105 (2010)

    Article  ADS  Google Scholar 

  19. Y. Ma, A. Khalid, T.D. Drysdale, D.R.S. Cumming, Opt. Lett. 34, 1555–1557 (2009)

    Article  ADS  Google Scholar 

  20. M.Z. Lu, W.Z. Li, E.R. Brown, Opt. Lett. 36, 1071–1073 (2011)

    Article  ADS  Google Scholar 

  21. N.R. Han, Z.C. Chen, C.S. Lim, B. Ng, M.H. Hong, Opt. Express 19, 6990–6998 (2011)

    Article  ADS  Google Scholar 

  22. D.R. Chowdhury, R. Singh, M. Reiten, H.T. Chen, A.J. Taylor, J.F. O’Hara, A.K. Azad, Opt. Express 19, 15817–15823 (2011)

    Article  ADS  Google Scholar 

  23. T.T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T.Y. Huang, T.J. Yen, Opt. Express 20, 7580–7589 (2012)

    Article  ADS  Google Scholar 

  24. X.Q. Zhang, J.Q. Gu, W. Cao, J.G. Han, A. Lakhtakia, W.L. Zhang, Opt. Lett. 37, 906–909 (2012)

    Article  ADS  Google Scholar 

  25. H. Tao, A.C. Strikwerda, K. Fan, C.M. Bingham, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D Appl. Phys. 41, 232004 (2008)

    Article  ADS  Google Scholar 

  26. A.K. Azad, H.T. Chen, X.C. Lu, J.Q. Gu, R. Nina, Terahertz Sci. Technol. 2, 15 (2009)

    Google Scholar 

  27. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Phys. Rev. B 78, 241103 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (No. 2011CBA00107), National High-Tech R&D Program of China under Grant No. 2011AA010204, the National Natural Science Foundation (No. 61071009), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biaobing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, L., Jin, B., Wu, J. et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Appl. Phys. B 113, 285–290 (2013). https://doi.org/10.1007/s00340-013-5470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5470-x

Keywords

Navigation