Applied Physics B

, Volume 113, Issue 2, pp 233–242 | Cite as

Reducing the effect of thermal noise in optical cavities

  • Sana Amairi
  • Thomas Legero
  • Thomas Kessler
  • Uwe Sterr
  • Jannes B. Wübbena
  • Olaf Mandel
  • Piet O. Schmidt


Thermal noise in optical cavities imposes a severe limitation in the stability of the most advanced frequency standards at a level of a few \(10^{-16}\sqrt{\hbox{s}/\tau}\) for long averaging times τ. In this paper, we describe two schemes for reducing the effect of thermal noise in a reference cavity. In the first approach, we investigate the potential and limitations of operating the cavity close to instability, where the beam diameter on the mirrors becomes large. Our analysis shows that even a 10-cm short cavity can achieve a thermal-noise-limited fractional frequency instability in the low 10−16 regime. In the second approach, we increase the length of the optical cavity. We show that a 39.5-cm long cavity has the potential for a fractional frequency instability even below 10−16, while it seems feasible to achieve a reduced sensitivity of <10−10/g for vibration-induced fractional length changes in all three directions.


Thermal Noise Support Point Optical Cavity Machine Tolerance Vibration Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the DFG through the Centre for Quantum Engineering and Space-Time Research (QUEST), by ESA through TRP AO4640/05/NL/PM and GSTP AO/1-6530/10/ NL/NA and by the European Metrology Research Program (EMRP). JRP SIB04. J.B.W. acknowledges support from the Hannover School for Laser, Optics and Space-Time Research (HALOSTAR) and the German National Academic Foundation (Studienstiftung des deutschen Volkes).


  1. 1.
    M.D. Swallows, M. Bishof, S.L. Campbell, J. Ye, T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, Phys. Rev. Lett. 109, 230801 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Gill, Metrologia 42, S125 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    C. Chou, D. Hume, J. Koelemeij, D. Wineland, T. Rosenband, Phys. Rev. Lett. 104(7), 70802 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch, L. Lorini, W. Oskay, R. Drullinger, T. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319(5871), 1808 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A.D. Ludlow, T. Zelevinsky, G.K. Campbell, S. Blatt, M.M. Boyd, M.H.G. De Miranda, M.J. Martin, J.W. Thomsen, S.M. Foreman, J. Ye, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, Y.L. Coq, Z.W. Barber, N. Poli, N.D. Lemke, K.M. Beck, C.W. Oates, Science 319(5871), 1805 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J. Hough, S. Rowan, B. Sathyaprakash, J. Phys. B: At. Mol. Opt. Phys. 38(9), S497 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    C. Braxmaier, O. Pradl, H. Müller, A. Peters, J. Mlynek, V. Loriette, S. Schiller, Phys. Rev. D 64(4), 042001 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. Kovalchuk, A. Peters, Phys. Rev. D 80(10), 105011 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    T. Nazarova, F. Riehle, U. Sterr, Appl. Phys. B: Lasers Opt. 83(4), 531 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    L. Chen, J. Hall, J. Ye, T. Yang, E. Zang, T. Li, Phys. Rev. A 74(5), 053801 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tao, L. Wen-Bo, Z. Er-Jun, C. Li-Sheng, Chin. Phys. 16(5), 1374 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Webster, M. Oxborrow, P. Gill, Phys. Rev. A 75(1), 11801 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    D. Guyomarc’h, G. Hagel, C. Zumsteg, M. Knoop, Phys. Rev. A 80(6) (2009)Google Scholar
  14. 14.
    J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, E. English, P. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79(5), 053829 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Dawkins, R. Chicireanu, M. Petersen, J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, S. Bize, Appl. Phys. B Lasers Opt. 99(1), 41 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, A.D. Shiner, Appl. Phys. B Lasers Opt. 95, 43-54 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. Lu, L. Wang, Opt. Exp. 17(11), 8970 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D. Leibrandt, M. Thorpe, M. Notcutt, R. Drullinger, T. Rosenband, J. Bergquist, Opt. Express 19(4), 3471 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Webster, P. Gill, Opt. Lett. 36(18), 3572 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Gillespie, F. Raab, Phys. Rev. D 52(2), 577 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Levin, Phys. Rev. D 57(2), 659 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93(25), 250602 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hong, H. Yang, E. Gustafson, R. Adhikari, Y. Chen, Arxiv preprint arXiv:1207.6145 (2012)Google Scholar
  24. 24.
    K. Numata, Direct measurement of mirror thermal noise. Ph.D. thesis, University of Tokyo (2002)Google Scholar
  25. 25.
    B. Mours, E. Tournefier, J. Vinet, Class. Quant. Grav. 23(20), 5777 (2006)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Siegman, Lasers (University Science Books, Mill Valley, 1986)Google Scholar
  27. 27.
    H. Callen, T. Welton, Phys. Rev. 83(1), 34 (1951)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    H. Callen, R. Greene, Phys. Rev. 86, 702 (1952)MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    T. Kessler, T. Legero, U. Sterr, J. Opt. Soc. Am. B 29(1), 178 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687– (2012)ADSCrossRefGoogle Scholar
  31. 31.
    G. Cole, S. Gröblacher, K. Gugler, S. Gigan, M. Aspelmeyer, Appl. Phys. Lett. 92(26), 261108 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H. Kimble, B. Lev, J. Ye, Phys. Rev. Lett. 101(26), 260602 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    M. Gorodetsky, Phys. Lett. A 372(46), 6813 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    F. Khalili, Phys. Lett. A 334(1), 67 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    K. Somiya, A. Gurkovsky, D. Heinert, S. Hild, R. Nawrodt, S. Vyatchanin, Phys. Lett. A 375(11), 1363 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E. Kley, A. Tünnermann, R. Schnabel, Phys. Rev. Lett. 104(16), 163903 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L. Ma, C. Oates, Nat. Photonics 5, 158 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    M. Swallows, M. Martin, M. Bishof, C. Benko, Y. Lin, S. Blatt, A. Rey, J. Ye, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 416 (2012)CrossRefGoogle Scholar
  39. 39.
    COMSOL. Multiphysics (2010). We estimate a meshing dependent error on the relative displacement field u(xyz)/L of around 10−11/g, and we used an adaptive meshing up to second generation to obtain the most accurate resultsGoogle Scholar
  40. 40.
    R. Lalezari. private communication (2010)Google Scholar
  41. 41.
    B. Young, F. Cruz, W. Itano, J. Bergquist, Phys. Rev. Lett. 82(19), 3799 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    S. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Gulati S., Edwards M. (1997). Critical reviews of optical science and technology, CR (67):1997Google Scholar
  44. 44.
  45. 45.
    B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, Opt. Express 20(23), 25409 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    D.R. Leibrandt, M.J. Thorpe, J.C. Bergquist, T. Rosenband, Opt. Express 19(11), 10278 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, S. Schiller, Appl. Phys. B: Lasers Opt. 104(4), 741 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    D. Anderson, Appl. Opt. 23(17), 2944 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, Appl. Phys. B: Lasers Opt. 31(2), 97 (1983)ADSCrossRefGoogle Scholar
  50. 50.
    F. Riehle, Frequency standards: basics and applications (Wiley-Vch, Weinheim 2006)Google Scholar
  51. 51.
    M. Koide, T. Ido, Jpn. J. Appl. Phys. 49(6), 0209 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sana Amairi
    • 1
  • Thomas Legero
    • 2
  • Thomas Kessler
    • 1
  • Uwe Sterr
    • 2
  • Jannes B. Wübbena
    • 1
  • Olaf Mandel
    • 1
  • Piet O. Schmidt
    • 1
    • 3
  1. 1.QUEST InstitutePhysikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany
  3. 3.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany

Personalised recommendations