Skip to main content
Log in

Measurement of the velocity inside an all-fiber DBR laser by self-mixing technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The self-mixing interference for optical velocity sensing is experimentally investigated in an all-fiber configuration distributed Bragg reflector laser. Simultaneously, theory model of self-mixing interference laser Doppler velocimeter based on quasi-analytical method. The experimental results show Doppler shift frequency is linearly proportional to the value of the velocity which agrees well with theory analysis. The results preserve an enough signal-to-noise ratio around 40 dB in the range from 39.3–317.0 mm/s (measurement range depending on bandwidth of circuit) for velocity measurement. Additionally, the cutoff circuit is used in our system to get a stable Doppler signal and reduces the error rate to 0.136 % in practical measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Churnside, Laser Doppler velocimetry by modulating a CO2 laser with backscattered light. Appl. Opt. 23(1), 61–66 (1984)

    Article  ADS  Google Scholar 

  2. L. Büttner, T. Pfister, J. Czarske, Fiber-optic laser Doppler turbine tip clearance probe. Opt. Lett. 31(9), 1217–1219 (2006)

    Article  ADS  Google Scholar 

  3. F. Onofri, Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements. Appl. Opt. 45(14), 3317–3324 (2006)

    Article  ADS  Google Scholar 

  4. K. Hatteland, M. Eriksen, A heterodyne ultrasound blood velocity meter. Mcd. Biol. Eng. Comput. 19(1), 91–96 (1981)

    Article  Google Scholar 

  5. G.E. Sommargren, Optical heterodyne profilometry. Appl. Opt. 20(4), 610–618 (1981)

    Article  ADS  Google Scholar 

  6. S. Schlamp, E.B. Cummings, T.H. Sobota, Laser-induced thermal-acoustic velocimetry with heterodyne detection. Opt. Lett. 25(4), 224–226 (2000)

    Article  ADS  Google Scholar 

  7. K.J. Målo/y, W. Goldburg, H.K. Pak, Spatial coherence of homodyne light scattering from particles in a convective velocity field. Phys. Rev. A 46(6), 3288–3291 (1992)

    Google Scholar 

  8. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode. Appl. Opt. 25(9), 1417–1419 (1986)

    Article  ADS  Google Scholar 

  9. G. Mourat, N. Servagent, T. Bosch, Optical feedback effects on the spectral linewidth of semiconductor laser sensors using self-mixing interference. IEEE J. Quantum Electron. 34(9), 1717–1721 (1998)

    Article  ADS  Google Scholar 

  10. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode. Appl. Opt. 25(9), 1417–1419 (1986)

    Article  ADS  Google Scholar 

  11. W.M. Wang, W.J. Boyle, K.T.V. Grattan, A.W. Palmer, Self-mixing interference in a diode laser: experimental observations and theoretical analysis. Appl. Opt. 32(9), 1551–1558 (1993)

    Article  ADS  Google Scholar 

  12. Y.L. Lim, M. Nikolic, K. Bertling, R. Kliese, A.D. Rakic, Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout. Opt. Express 17(7), 5517–5525 (2009)

    Article  ADS  Google Scholar 

  13. N. Tsukuda, S. Shinohara, T. Shibata, H. Yoshida, H. Ikeda, M. Sumi, “New range-finding speedometer using a self-mixing laser diode modulated by triangular wave pulse current.” In: Proceedings of IEEE Instrumentation and Measurement Technology Conference 1332–335 (1994)

  14. L. Lu, Z. Cao, J. Dai, B. Yu, Self-mixing signal in Er3 + –Yb3 + codoped distributed bragg reflector fiber laser for remote sensing applications up to 20Km. IEEE Photonics Technol. Lett. 24(5), 392–394 (2012)

    Article  ADS  Google Scholar 

  15. L. Lu, J. Yang, L. Zhai, R. Wang, Z. Cao, B. Yu, Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth. Opt. Express 20(8), 10 (2012)

    Article  Google Scholar 

  16. M. Laroche, L. Kervevan, H. Gilles, S. Girard, J.K. Sahu, Doppler velocimetry using self-mixing effect in a short Er-Yb-doped phosphate glass fiber laser. Appli. Phys. B Lasers Opt. 80(4–5), 603–607 (2005)

    Article  ADS  Google Scholar 

  17. I. Kelson, A. Hardy, Optimization of strongly pumped fiber lasers. J. Lightwave Technol. 17(5), 891–897 (1999)

    Article  ADS  Google Scholar 

  18. E. Yahel, A.A. Hardy, Modeling and optimization of short Er3+ -Yb3+ codoped fiber lasers. IEEE J. Quantum Electronics 39(11), 1444–1451 (2003)

    Article  ADS  Google Scholar 

  19. L.E. Estes, L.M. Narducci, R.A. Tuft, Scattering of light from a rotating ground glass. J. Opt. Soc. Am. 61, 1301–1306 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Fund of Anhui Province (Grant No. 1208085QF110) and the National Natural Science Foundation of China (Grant No. 60908035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Lu, L., Zhang, W. et al. Measurement of the velocity inside an all-fiber DBR laser by self-mixing technique. Appl. Phys. B 113, 153–158 (2013). https://doi.org/10.1007/s00340-013-5452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5452-z

Keywords

Navigation