Advertisement

Applied Physics B

, Volume 113, Issue 2, pp 171–178 | Cite as

Ideal multipole ion traps from planar ring electrodes

  • Robert J. ClarkEmail author
Article

Abstract

We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. We illustrate the desirable properties of the traps by considering a few simple cases of confined ions. We predict that mm-scale surface traps may have trap depths as high as tens of electron volts when parameters of a magnitude common in the field are chosen. Under similar conditions, micromotion amplitudes in a 2D ion crystal as low as tens of nanometers could be realized. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. Applications of these traps include quantum information science, frequency metrology, and cold ion–atom collisions.

Keywords

Trap Center Trap Depth Paul Trap Drive Frequency Secular Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge funding from The Citadel and The Citadel Foundation, helpful discussions with Roman Schmied, Caroline Champenois, and David Kielpinski, and critical readings of the manuscript by Kenneth Brown and Lok C. Lew Yan Voon.

References

  1. 1.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P.O. Schmidt, T. Rosenband, C. Langer, W.J.C. Bergquist, D. J. Wineland, Science 309, 749 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, et al., Science 319, 1808 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Douglas, A.J. Frank, D. Mao, Mass Spec. Rev. 24, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Okada, K. Yasuda, T. Takayanagi, M.Wada, H. Scheussler, S. Ohtani, Phys. Rev. A 75, 033409 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    C. Champenois, M. Marciante, J. Pedregosa-Gutierrez, H. Houssin, M. Knoop, Phys. Rev. A 81, 043410 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Cetina, A.T. Grier, V. Vuletic, arXiv:1205.2806v1 (2012)Google Scholar
  8. 8.
    M. Marciante, C. Champenois, J. Pedregosa-Gutierrez, A. Calisti, M. Knoop, Phys. Rev. A 83, 021404(R) (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J. Chiaverini, R.B. Blakestad, J. Britton, J.D. Jost, C. Langer, D. Liebfried, R. Ozeri, D.J. Wineland, Quant. Inf. Comp. 5, 419 (2005)zbMATHGoogle Scholar
  10. 10.
    S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Liebfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, et al., Phys. Rev. Lett. 96, 253003 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    C.E. Pearson, D.R. Leibrandt, W.S. Bakr, W.J. Mallard, K.R. Brown, I.L. Chuang, Phys. Rev. A 73, 032307 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Chiaverini, J.W.E. Lybarger, Phys. Rev. A 77, 022324 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 101, 090502 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    F. Mintert, C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Debatin, M. Kröner, J. Mikosch, S. Trippel, N. Morrison, M. Reetz-Lamour, P. Woias, R. Wester, M. Weidemüller, Phys. Rev. A 77, 033422 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    T.H. Kim, P.F. Herskind, T. Kim, J. Kim, I.L. Chuang, Phys. Rev. A 82, 043412 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M.G. House, Phys. Rev. A 78, 033402 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Wesenberg, Phys. Rev. A 78, 063410 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    R. Schmied, New J. Phys. 12, 023038 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verdu, M. Vogel, G. Werth, Eur. Phys. J. D 32, 139 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. Champenois, J. Phys. B 42, 154002 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R. Schmied, J. Wesenberg, D. Leibfried, Phys. Rev. Lett. 102, 233002 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    L.W. Lupinski, M.J. Madsen, J. Math. Phys. 50, 112909 (2009)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Phys. Rev. Lett. 102, 073004 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    R. Schmied, SurfacePattern software package, http://atom.physik.unibas.ch/people/romanschmied.php

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsThe CitadelCharlestonUSA

Personalised recommendations