Skip to main content
Log in

Polarization-independent beam splitting by a photonic crystal right prism

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Splitting of light waves by a two-dimensional photonic crystal associated with source size and dispersion relation of photonic crystal at a wavelength of 1,550 nm without disturbing periodicity is numerically demonstrated via finite-difference time-domain simulations. Split branches in either polarization state make plus or minus 45° with the [11] direction and propagate in a self-collimated manner with equal amplitude and phase. Sixty-four percent of total transmittance is attained provided that the waves are coupled and collected through appropriate planar waveguides. Alternatively, approximately 50 % total transmittance for both polarizations can be obtained by application of an anti-reflection coating layer at the input face. Polarization-independent beam splitting occurs in a narrow range around the target wavelength, while its transverse-magnetically polarized sub-harmonic can also be split. The photonic crystal can also operate as a polarizing splitter at oblique incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Zhao, J. Zhang, P. Yao, X. Jiang, X. Chen, Photonic crystal Mach-Zehnder interferometer based on self-collimation. Appl. Phys. Lett. 90(23), 231114 (2007)

    Article  ADS  Google Scholar 

  2. D.W. Prather, S. Shi, J. Murakowski, G.J. Schneider, A. Sharkawy, C. Chen, B. Miao, R. Martin, Self-collimation in photonic crystal structures: a new paradigm for applications and device development. J. Phys. D: Appl. Phys. 40(9), 2635–2651 (2007)

    Article  ADS  Google Scholar 

  3. J. Yonekura, M. Ikeda, T. Baba, Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method. J. Lightwave Technol. 17(8), 1500–1508 (1999)

    Article  ADS  Google Scholar 

  4. R.W. Ziolkowski, M. Tanaka, FDTD analysis of PBG waveguides. power splitters and switches. Opt. Quant. Electron. 31(9), 843–855 (1999)

    Article  Google Scholar 

  5. T. Søndergaard, K.H. Dridi, Energy flow in photonic crystal waveguides. Phys. Rev. B 61, 15688–15696 (2000)

    Article  ADS  Google Scholar 

  6. D. Yang, H. Tian, Y. Ji, High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends. Optics Commun. 285(18), 3752–3757 (2012)

    Article  ADS  Google Scholar 

  7. M. Bayindir, B. Temelkuran, E. Ozbay, Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77(24), 3902 (2000)

    Article  ADS  Google Scholar 

  8. I. Park, H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, O. Beom-Hoan, S.-G. Park, E.-H. Lee, Photonic crystal power-splitter based on directional coupling. Opt. Express 12(15), 3599–3604 (2004)

    Article  ADS  Google Scholar 

  9. D.C. Tee, T. Kambayashi, S.R. Sandoghchi, N. Tamchek, F. Rafiq, M. Adikan, Efficient, wide angle, structure tuned 1x3 photonic crystal power splitter at 1550 nm for triple play applications. J. Lightwave Technol. 30(17), 2818–2823 (2012)

    Article  ADS  Google Scholar 

  10. Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, Y. Fu, Multiple beam splitting to free space from a V groove in a photonic crystal waveguide. Appl. Phys. B Lasers Optics 102(4), 857–861 (2010)

    Article  ADS  Google Scholar 

  11. X. Yu, S. Fan, Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83(16), 3251 (2003)

    Article  ADS  Google Scholar 

  12. Q.-Y. Zhu, Y.-Q. Fu, D.-Q. Hu, Z.-M. Zhang, A novel optical beam splitter based on photonic crystal with hybrid lattices. Chin. Phys. B 21(6), 064220 (2012)

    Article  Google Scholar 

  13. W.Y. Liang, J.W. Dong, H.Z. Wang, Directional emitter and beam splitter based on self-collimation effect. Opt. Express 15(3), 1234 (2007)

    Article  ADS  Google Scholar 

  14. Y. Xu, X.-J. Chen, S. Lan, Q. Guo, W. Hu, L.-J. Wu, The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry. J. Opt. A Pure Appl. Opt. 10(8), 085201 (2008)

    Article  ADS  Google Scholar 

  15. H. Kurt, M. Turduev, I.H. Giden, Crescent shaped dielectric periodic structure for light manipulation. Opt. Express 20(7), 7184–7194 (2012)

    Article  ADS  Google Scholar 

  16. V. Zabelin, L.A. Dunbar, N. Le Thomas, R. Houdré, M.V. Kotlyar, L. O’Faolain, T.F. Krauss, Self-collimating photonic crystal polarization beam splitter. Opt. Lett. 32(5), 530–532 (2007)

    Article  ADS  Google Scholar 

  17. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C.J. Summers, Polarization beam splitter based on a photonic crystal heterostructure. Opt. Lett. 31(21), 3104–3106 (2006)

    Article  ADS  Google Scholar 

  18. X. Shen, K. Han, X. Yang, H. Li, Polarization-independent self-collimating bends and beam splitters in photonic crystals. Chin Opt. Lett. 5(11), 662–664 (2007)

    ADS  Google Scholar 

  19. M. Turduev, I.H. Giden, H. Kurt, Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs. J. Opt. Soc. Am. B 29(7), 1589–1598 (2012)

    Article  ADS  Google Scholar 

  20. G.Y. Dong, J. Zhou, X.L. Yang, L.Z. Cai, Dual-negative refraction in photonic crystals with hexagonal lattices. Opt. Exp. 19(13), 12119–12124 (2011)

    Article  ADS  Google Scholar 

  21. Y. Shen, J. Zhou (2011) Positive-negative birefraction phenomenon for TM polarization in annular photonic crystal. Chin. Opt. Lett. 9(2), 1–4

    Google Scholar 

  22. G.Y. Dong, J. Zhou, X.L. Yang, X. Meng, Multi-refraction with same polarization state in two dimensional triangular photonic crystals. Prog. Electromagn. Res. 128, 91–103 (2012)

    Google Scholar 

  23. I. De Leon, F. Roux, Fourier analysis of reflection and refraction in two-dimensional photonic crystals. Phys. Rev. B 71(23), 235105 (2005)

    Article  ADS  Google Scholar 

  24. A. Kim, K.B. Chung, J.W. Wu, Control of self-collimated Bloch waves by partially flat equifrequency contours in photonic crystals. Appl. Phys. Lett. 89(25), 251120 (2006)

    Article  ADS  Google Scholar 

  25. L. Xia, X. Wei, J. Yurong, Effect of source parameters on beam self-collimation in 2d photonic crystal. In Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, pp. 469–471 (2007)

  26. A.F. Matthews, S.K. Morrison, Y.S. Kivshar, Self-collimation and beam splitting in low-index photonic crystals. Opt. Commun. 279(2), 313–319 (2007)

    Article  ADS  Google Scholar 

  27. A.F. Matthews, Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies. Opt. Commun. 282(9), 1789–1792 (2009)

    Article  ADS  Google Scholar 

  28. S.-G. Lee, J.-S. Choi, J.-E. Kim, H.Y. Park, Reflection minimization at two-dimensional photonic crystal interfaces. Opt. Express 16(6), 4270–4277 (2008)

    Article  ADS  Google Scholar 

  29. T.-T. Kim, S.-G. Lee, M.-W. Kim, H.Y. Park, J.-E. Kim, Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures. Appl. Phys. Lett. 95(1), 011119 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Y. Wang, K. Deng, S. Xu, C. Qiu, H. Yang, Z. Liu, Applications of antireflection coatings in sonic crystal-based acoustic devices. Phys. Lett. A 375(10), 1348–1351 (2011)

    Article  ADS  Google Scholar 

  31. J.-M. Park, S.-G. Lee, H.-R. Park, M.-H. Lee, Self-collimating photonic crystal antireflection structure for both TE and TM polarizations. Opt. Express 18(12), 13083 (2010)

    Article  ADS  Google Scholar 

  32. K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65(25), 3152–3155 (1990)

    Article  ADS  Google Scholar 

  33. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    ADS  MATH  Google Scholar 

  34. R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J.-P. Berrenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Cicek, O.A. Kaya, B. Ulug, Acoustic beam splitting in a sonic crystal around a directional band gap. Chin. Phys. B (2013) submitted

  37. X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106(8), 084301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Cicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yucel, M.B., Cicek, A. & Ulug, B. Polarization-independent beam splitting by a photonic crystal right prism. Appl. Phys. B 113, 107–114 (2013). https://doi.org/10.1007/s00340-013-5445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5445-y

Keywords

Navigation