Skip to main content
Log in

Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets

Applied Physics B Aims and scope Submit manuscript

Abstract

We have previously demonstrated a novel technique for autonomously forming a nanophotonic droplet, which is micro-scale spherical polymer structure that contains paired heterogeneous nanometric components. The sort-selectivity and alignment accuracy of the nanometric components in each nanophotonic droplet, and the related homogeneity of the optical function, are due to a characteristic pairing process based on a phonon-assisted photo-curing method. The proposed method requires irradiating a mixture of components with light to induce optical near-field interactions between each component, and subsequent processes based on these interactions. The pairing yield of components via the interactions is considered to mainly depend on the frequency of their encounters and the size-resonance effect between encountered components. In this paper, we model these two factors by individual stochastic procedures and construct a numerical model to describe the pairing process. Agreement between the results of numerical and experimental demonstrations shows the validity of our stochastic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quantum Electron 14, 1404 (2008)

    Article  Google Scholar 

  2. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82(18), 2957 (2003)

    Article  ADS  Google Scholar 

  3. S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B-Lasers Opt. 99, 415 (2010)

    Google Scholar 

  4. H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B-Lasers Opt. 98, 283 (2010)

    Google Scholar 

  5. T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B-Lasers Opt. 104, 747 (2011)

    Google Scholar 

  6. K. Kitamura, T. Kawazoe, M. Ohtsu, Appl. Phys. B-Lasers Opt. 107, 293 (2012)

    Google Scholar 

  7. T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86(10), 103102 (2005)

    Google Scholar 

  8. W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophotonics 1, 011591 (2007)

    Google Scholar 

  9. M. Naruse, K. Leibnitz, F. Peper, N. Tate, W. Nomura, T. Kawazoe, M. Murata, M. Ohtsu, Nano Commun. Netw. 2(4), 189 (2011)

    Google Scholar 

  10. T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, M. Naruse, Appl. Phys. B 103(3), 537 (2011)

    Google Scholar 

  11. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495 (2002)

  12. B.A. Parviz, D. Ryan, G.M. Whitesides, IEEE Trans. Adv. Packaging 26, 233 (2003)

    Google Scholar 

  13. Y.I. Mazur, Z.M. Wang, G.G. Tarasov, M. Xiao, G.J. Salamo, J.W. Tomm, V. Talalaev, H. Kissel, Appl. Phys. Lett. 86, 063102 (2005)

    Google Scholar 

  14. M.P. Stoykovich, M. Müller, S. Ouk Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, P.F. Nealey, Science 308, 1442 (2005)

    Google Scholar 

  15. T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93(5), 55 (2008)

    Google Scholar 

  16. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22(21), 215605 (2011)

    Google Scholar 

  17. T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104(4), 747 (2011)

    Google Scholar 

  18. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B-Lasers Opt. 110, 39 (2013)

    Google Scholar 

  19. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B-Lasers Opt. 110, 293 (2013)

    Google Scholar 

  20. S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279 (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research and Development Program for Innovative Energy Efficiency Technology funded by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Tate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tate, N., Naruse, M., Liu, Y. et al. Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets. Appl. Phys. B 112, 587–592 (2013). https://doi.org/10.1007/s00340-013-5442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5442-1

Keywords

Navigation