Skip to main content
Log in

Photothermal diffuse reflectance: a new tool for spectroscopic investigation of scattering samples

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new method named photothermal diffuse reflectance (PTDR) is presented. This method combines the diffuse reflectance spectroscopy with the photothermal technique and is particularly suited for the investigation of strongly scattering samples. This method takes advantage of the high spectral selectivity and absorption of the mid-infrared region with the larger scattering cross section and high detector sensitivity available in the near-infrared. A model describing the PTDR method is proposed and supported with experimental results. The potential of the PTDR technique is illustrated by experimental signals obtained from various scattering media like polymers, liquids and powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.P. Almond, P.M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996)

  2. A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (North-Holland, Amsterdam, 1987)

  3. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)

  4. J. Opsal, M.W. Taylor, W.L. Smith, A. Rosencwaig, J. Appl. Phys. 61, 240 (1986)

    Article  ADS  Google Scholar 

  5. C. Christofides, I.A. Vitkin, A. Mandelis, J. Appl. Phys. 67, 2815 (1990)

    Article  ADS  Google Scholar 

  6. G. Langer, J. Hartmann, M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997)

    Article  ADS  Google Scholar 

  7. R.M. Costescu, M.A. Wall, D.G. Cahill, Phys. Rev. B 67, 054302 (2003)

    Article  ADS  Google Scholar 

  8. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, J.C. Zhao, Nat. Mater. 3, 298 (2004)

    Article  ADS  Google Scholar 

  9. K. Hatori, N. Taketoshi, T. Baba, H. Ohta, Rev. Sci. Instrum. 76, 114901 (2005)

    Article  ADS  Google Scholar 

  10. K. Maruo, M. Tsurugi, M. Tamura, Y. Ozaki, Appl. Spectr. 57, 1236 (2003)

    Article  ADS  Google Scholar 

  11. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J.J. Butler, B.J. Tromberg, J. Biomed. Opt. 11, 044005 (2006)

    Article  ADS  Google Scholar 

  12. P.R. Bargo, S.A. Prahl, T.T. Goodell, R.A. Sleven, G. Koval, G. Blair, S.L. Jacques, J Biomed Opt. 10, 034018 (2005)

    Article  Google Scholar 

  13. J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, London, 1999)

  14. M.J.D. Low, C. Morterra, A.G. Severdia, M. Lacroix, Appl. Surf. Sci 13, 429 (1982)

    Article  ADS  Google Scholar 

  15. A.C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980)

    Article  ADS  Google Scholar 

  16. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980)

  17. A.C. Tam, Ultrasensitive Laser Spectroscopy (Academic Press, New York, 1983)

  18. M.J. Weber (ed.), Handbook of Optical Materials (CRC Press, Boca Raton, 2003)

  19. P. Walstra, J.T.M. Wouters, T.J. Geurts, Dairy Science and Technology (CRC Press, Boca Raton, 2005)

Download references

Acknowledgments

The financial support by Glucometrix NIB and ETH Zürich is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Sigrist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, J.M., Kottman, J. & Sigrist, M.W. Photothermal diffuse reflectance: a new tool for spectroscopic investigation of scattering samples. Appl. Phys. B 112, 547–551 (2013). https://doi.org/10.1007/s00340-013-5437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5437-y

Keywords

Navigation