Applied Physics B

, Volume 112, Issue 2, pp 267–278 | Cite as

Observations of Autler-Townes spatial splitting of four-wave mixing image

  • Gaoping Huang
  • Jia Sun
  • Weikang Feng
  • Jiamin Yuan
  • Zhenkun Wu
  • Mengzhe Qin
  • Yiqi Zhang
  • Yanpeng Zhang


We report the self- and external-dressed Autler-Townes (A-T) splittings of the images of the generated four-wave mixing signal (FWM) and electromagnetically induced transparency (EIT) of probe images in cascade three-level atomic system. Such spatial properties of probe and FWM signals are induced by the enhanced cross-Kerr nonlinearity. We demonstrate the controlled electromagnetically induced spatial dispersion (EISD), splitting and focusing of probe and FWM signals images by adjusting self- and external-dressing fields. Studies on such controllable A-T spatial splitting and spatial EIT effect can be very useful in applications of spatial signal processing and optical communication.


Probe Transmission Electromagnetically Induce Transparency Spatial Shift Resonant Point Resonant Transition Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the 973 Program (No. 2012CB921804), the Xi'an Jiaotong University Innovation Fund for Undergraduate Research Training and Practice, the National Natural Science Foundation of China (No. 10974151, No. 61078002, No. 61078020, No. 11104214, No. 61108017, No. 11104216, No. 61205112), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110006, No. 20110201120005, No. 20100201120031), and China Postdoctoral Science Foundation (No. 2012M521773).


  1. 1.
    S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100(2), 703–722 (1955)ADSCrossRefGoogle Scholar
  2. 2.
    W. Chalupczak, W. Gawlik, J. Zachorowski, Four-wave mixing in strongly driven two-level systems. Phys. Rev. A 49(6), 4895–4901 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Qi, G. Lazarov, X.J. Wang, L. Li, L.M. Narducci, A.M. Lyyra, F.C. Spano, Autler-Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules. Phys. Rev. Lett. 83(2), 288–291 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F.X. Kärtner, Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics. Phys. Rev. Lett. 89(12), 127401 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    C. Ates, T. Pohl, T. Pattard, J.M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas. Phys. Rev. Lett. 98(2), 023002 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T. Amthor, C. Giese, C.S. Hofmann, M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas. Phys. Rev. Lett. 104(1), 013001 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M.D. Lukin, S.F. Yelin, M. Fleischhauer, M.O. Scully, Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60(4), 3225–3228 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    H. Wang, D. Goorskey, M. Xiao, Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 87(7), 073601 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    G.P. Agrawal, Induced focusing of optical beams in self-defocusing nonlinear media. Phys. Rev. Lett. 64(21), 2487–2490 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    R.S. Bennik, V. Wong, A.M. Marino, D.L. Aronstein, R.W. Boyd, C.R. Stroud Jr, S. Lukishova, D.J. Gauthier, Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor. Phys. Rev. Lett. 88(11), 113901 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Stentz, M. Kauranen, J.J. Maki, G.P. Agrawal, R.W. Boyd, Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium. Opt. Lett. 17(1), 19–21 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    W. Krolikowski, M. Saffman, B. Luther-Davies, C. Denz, Anomalous interaction of spatial solitons in photorefractive media. Phys. Rev. Lett. 80(15), 3240–3243 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Y.P. Zhang, Z.G. Wang, H.B. Zheng, C.Z. Yuan, C.B. Li, K.Q. Lu, M. Xiao, Four-wave-mixing gap solitons. Phys. Rev. A 82(5), 053837 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    P.K. Vudyasetu, R.M. Camacho, J.C. Howell, Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100(12), 123903 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Entangled images from four-wave mixing. Science 321(5888), 544–547 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    W. Krolikowski, E.A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y.S. Kivshar, C. Denz, B.L. Luther-Davies, Observation of dipole-mode vector solitons. Phys. Rev. Lett. 85(7), 14–24 (2000)CrossRefGoogle Scholar
  17. 17.
    Y.P. Zhang, U. Khadka, B. Anderson, M. Xiao, Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys. Rev. Lett. 102(1), 013601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Badger, I.G. Hughes, C.S. Adams, J. Phys. B 34, L749 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Y.P. Zhang, Z.Q. Nie, Z.G. Wang, C.B. Li, F. Wen, M. Xiao, Evidence of Autler-Townes splitting in high-order nonlinear processes. Opt. Lett. 35(20), 3420–3422 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gaoping Huang
    • 1
  • Jia Sun
    • 1
  • Weikang Feng
    • 1
  • Jiamin Yuan
    • 1
  • Zhenkun Wu
    • 1
  • Mengzhe Qin
    • 1
  • Yiqi Zhang
    • 1
  • Yanpeng Zhang
    • 1
  1. 1.Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic TechniqueXi’an Jiaotong UniversityXi’anChina

Personalised recommendations