Advertisement

Applied Physics B

, Volume 112, Issue 2, pp 231–239 | Cite as

Stable MHz-repetition-rate passively Q-switched microchip laser frequency doubled by MgO:PPLN

  • E. MehnerEmail author
  • A. Steinmann
  • R. Hegenbarth
  • H. Giessen
  • B. Braun
Article

Abstract

We present an Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. The system generates 520 ps pulses at 1064 nm with 340 mW average output power at up to 2.3 MHz repetition rate. Single longitudinal and transverse mode operation with a peak-to-peak timing jitter less than 1 % is achieved. We discuss the influence of different setup parameters by using numerical simulations of the coupled rate equations and FEM simulations of the thermal management. The infrared light was frequency doubled in an MgO:PPLN crystal with up to 75 % conversion efficiency, which to our knowledge is the highest conversion efficiency that was ever achieved with passively Q-switched microchip lasers.

Keywords

Pump Power Second Harmonic Generation Thermal Lens Finite Element Method Simulation Microchip Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge Jochen Bönig and Andreas Dietz for performing the FEM simulations. This research project is financially supported by the German Federal Ministry of Education and Research (No.: 17 N 43 08).

References

  1. 1.
    T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences 97, 8206–8210 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    B.R. Rankin, R.R. Kellner, S.W. Hell, Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Optics Letters 33, 2491–2493 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, A. Tünnermann, Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser. Optics Letters 37, 2550–2552 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G.A. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, Ultrafast ytterbium-doped bulk lasers and laser amplifier. Appl. Phys. B 69, 3–17 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    A. Killi, A. Steinmann, J. Dörring, U. Morgner, M.J. Lederer, D. Kopf, C. Fallnich, High-peak-power pulses from a cavity-dumped Yb:KY(KW4)2 oscillator. Optics Letters 30, 1891–1893 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Zayhowski, C. Dill III, Diode-pumped passively Q-switched picosecond microchip lasers. Optics Letters 19, 1427–1429 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    B. Braun, F.X. Kärtner, G. Zhang, M. Moser, U. Keller, 56-ps passively Q-switched diode-pumped microchip laser. Optics Letters 22, 381–383 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, A. Tünnermann, 2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser. Appl. Phys. B 97, 317–320 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics 2, 435–453 (1996)CrossRefGoogle Scholar
  10. 10.
    Material specifications by GWU-Lasertechnik: http://www.gwu-group.de/cmslaser/
  11. 11.
    G.J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B 16, 376–388 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Steinmetz, D. Nodop, A. Martin, J. Limpert, A. Tünnermann, Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding. Optics Letters 35, 2885–2887 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Braun, Compact pulsed diode-pumped solid-state lasers, Diss., ETH No: 11953, 1996Google Scholar
  14. 14.
    J. J. Zayhowski, in Thermal guiding in Microchip lasers, ed. by H. P. Jenssen and G. Dubé. Advanced solid-state lasers, vol. 5 (Washington, DC, 1990): Opt. Soc. America, OSA Proc. Series, 9–13Google Scholar
  15. 15.
    R.S. Conroy, Microchip lasers, Dissertation, University of St. Andrews, 1998Google Scholar
  16. 16.
    A.J. Kemp, R.S. Conroy, G.J. Friel, B.D. Sinclair, Guiding effects in Nd:YVO4 microchip lasers operating well above threshold. IEEE Journal of Quantum Electronics 35, 675–681 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Mehner
    • 1
    • 2
    Email author
  • A. Steinmann
    • 2
  • R. Hegenbarth
    • 2
  • H. Giessen
    • 2
  • B. Braun
    • 1
  1. 1.Georg Simon Ohm University of Applied Sciences NurembergNurembergGermany
  2. 2.4th Physics Institute and Research Center SCoPEUniversity of StuttgartStuttgartGermany

Personalised recommendations