Applied Physics B

, Volume 111, Issue 2, pp 161–164 | Cite as

Spectral mirror for ultra-short, high peak power, multi-PW Ti:sapphire lasers

  • F. GiambrunoEmail author
  • A. Freneaux
  • G. Chériaux
Rapid Communication


A multilayer mirror for spectral filtering adapted to ultra-short and multi-PW Ti:Sa laser has been designed, manufactured and characterized. The method used to determine both the reflectivity shape and the coating design leads to global compensation of gain narrowing, saturation and spectral phase. The result is a spectral control on 200 nm range while keeping a flat spectral phase. This kind of filter will enable obtaining 15 fs pulse duration for multi-PW laser systems based on Ti:Sa.


Group Velocity Dispersion Multilayer Coating Spectral Phase Spectral Filter Refractive Index Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Lureau, S. Laux, O. Casagrande, C. Radier, O. Chalus, F. Caradec, C. Simon-Boisson, High repetition rate PetaWatt level titanium sapphire laser system for laser Wakefield acceleration. CLEO (2012)Google Scholar
  2. 2.
    T. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, T.M. Jeong, J. Lee, Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express 20, 10807–10815ADSCrossRefGoogle Scholar
  3. 3.
    Z. Wang, C. Liu, Z. Shen, Q. Zhang, Z. Wei, 1.16 PW sub-30fs Ti:sapphire laser system of seeding with optical parametrical amplified femtosecond laser. CLEO (2011)Google Scholar
  4. 4.
    C. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A. Tien, K. Wilson, V. Yakovlev, K. Yamakawa, Regenerative pulse shaping and amplification of ultrabroadband optical pulses. Opt. Lett. 21, 219–221 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, P. Paul, Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique. CLEO/QELS (2008)Google Scholar
  6. 6.
    M. Kalashnikov, K. Osvay, I. Lachko, H. Schonnagel, W. Sandner, Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification. Appl. Phys. B 81, 1059–1062 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    G. Chériaux, C. Radier, F. Giambruno, C. Simon-Boisson, V. Moro, Spatio-temporal chirped amplification for avoiding spectral modifications in ultra-short Petawatt lasers pulse. HILAS (2011)Google Scholar
  8. 8.
    Y. Nabekawa, A. Amani Eilanlou, Y. Furukawa, K.L. Ishikawa, H. Takahashi, K. Midorikawa, Multi-teraWatt laser system generating 12-fs pulses at 100 Hz repetition rate. Appl. Phys. B 101, 523–534 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Giambruno, C. Radier, G. Rey, G. Chériauxm, Design of a 10 PW (150 J = 15 fs) peak power laser system with Ti:sapphire medium through spectral control. Appl. Opt. 50, 2617–2621 (2011)CrossRefGoogle Scholar
  10. 10.
    Sh. Furman, A. Tikhonravov, Basics of optics of multilayer systems. Edition Frontieres, Gif-sur-Yvette (1992)Google Scholar
  11. 11.
    D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison Wesley, Reading, 1989)Google Scholar
  12. 12.
    L. Lepetit, G. Chriaux, M. Joffre, Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. JOSA B 12, 2467–2474 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire pour l’Utilisation des Lasers IntensesÊcole PolytechniquePalaiseauFrance
  2. 2.Laboratoire d’Optique AppliquéeChemin de la HunierePalaiseauFrance

Personalised recommendations