Applied Physics B

, Volume 113, Issue 1, pp 49–55 | Cite as

First gravity measurements using the mobile atom interferometer GAIN

  • M. Hauth
  • C. Freier
  • V. Schkolnik
  • A. Senger
  • M. Schmidt
  • A. Peters


We present the compact Gravimetric Atom Interferometer (GAIN), based on laser-cooled 87Rb atoms, and discuss its first measurements of the local gravitational acceleration. In this context, we also describe an active vibration isolation system and a tip-tilt stage, which allow for a suppression of vibrational noise and systematic effects like the Coriolis force due to Earth’s rotation.


87Rb Atom Magneto Optical Trap Atom Interferometer Absolute Gravimeter Gravity Gradiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the European Science Foundation and the Deutsche Forschungsgemeinschaft (Euro-Quasar-IQS, PE 904/2-1 and PE 904/4-1). We thank the Bundesamt für Kartographie und Geodäsie and the Institut für Erdmessung for their help with the tidal model and its parameters.


  1. 1.
    D.S. Weiss, B.C. Young, S. Chu, Precision measurement of h/m Cs based on photon recoil using laser-cooled atoms and atomic interferometry. Appl. Phys. B Lasers Opt. 59, 217–256 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    A. Wicht, J. Hensley, E. Sarajlic, S. Chu , A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr. 2002, 82 (2002)CrossRefGoogle Scholar
  3. 3.
    G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100 (2008)Google Scholar
  4. 4.
    S. Dimopoulos, P. Graham, J.M. Hogan, M.A. Kasevich, Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 1–4 (2007)CrossRefGoogle Scholar
  5. 5.
    J.M. Hogan, D.M.S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow, P.W. Graham, M.A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B.D. Seery, L. Feinberg, R. Keski-Kuha, An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relat. Gravit. 43, 1953–2009 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Herrmann, H. Dittus, C. Lämmerzahl, Testing the equivalence principle with atomic interferometry. Class. Quantum Gravity 29, 184003 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, The influence of transverse motion within an atomic gravimeter. New J. Phys. 13, 065025 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Peters, K.-Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    T. Müller, M. Gilowski, M. Zaiser, P. Berg, C. Schubert, T. Wendrich, W. Ertmer, E.M. Rasel, A compact dual atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 53, 273–281 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    O. Carnal, J. Mlynek, Youngs double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67(2), 181–184 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    L. Timmen, O. Gitlein, V. Klemann, D. Wolf, Observing gravity change in the Fennoscandian uplift area with the Hanover absolute gravimeter. Pure Appl. Geophys. 169, 1331–1342 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G. Berrino, Combined gravimetry in the observation of volcanic processes in Southern Italy. J. Geodynam. 30, 371–388 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    P. Berman, Atom interferometry. Academic Press, London (1997)Google Scholar
  15. 15.
    J.M. Hogan, D.M.S. Johnson, M.A. Kasevich, Light-pulse atom interferometry. in Proceedings of the international school of physics enrico fermi course CLXVIII on atom optics and space physics, ed by E. Arimondo, W. Ertmer, W. P. Schleich, E. M. Rasel (IOS Press, Oxford, 2007), pp. 411–447Google Scholar
  16. 16.
    M. Schmidt, M. Prevedelli, A. Giorgini, G.M. Tino, A. Peters, A portable laser system for high-precision atom interferometry experiments. Appl. Phys. B 102, 11–18 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Schmidt, A. Senger, M. Hauth, C. Freier, V. Schkolnik, A. Peters, A mobile high-precision absolute gravimeter based on atom interferometry. Gyrosc. Navig. 2, 170–177 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Senger, A mobile atom interferometer for high precision measurements of local gravity. PhD thesis, Humboldt Universität zu Berlin (2011)Google Scholar
  19. 19.
    A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G. Eur. Phys. J. D 40, 271–279 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Laser cooling of cesium atoms below 3 μK. EPL (Europhys. Lett.) 12(8), 683 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Kasevich, D.S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 66(18), 2297–2300 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Kasevich, S. Chu, Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B Lasers Opt. 54, 321–332 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P. Cheinet, B. Canuel, F.P.D. Santos, A. Gauguet, F. Leduc, A. Landragin, Measurement of the sensitivity function in time-domain atomic interferometer. IEEE, pp. 1–15 (2005)Google Scholar
  24. 24.
    J. Hensley, A. Peters, S. Chu, Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70(6), 2735 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, H. Müller, Influence of the Coriolis force in atom interferometry. Phys. Rev. Lett. 108, 1–5 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Vancamp, P. Vauterin, Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci. 31, 631–640 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A. Reinhold, W. Hoppe, Technischer Bericht (G4-2010-5) Absolute und relative Schweremessungen in der Humboldt-Universität zu Berlin (Campus Adlershof) vom 10–12 September 2010. Technical report, Bundesamt für Kartographie und Geodäsie (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Hauth
    • 1
  • C. Freier
    • 1
  • V. Schkolnik
    • 1
  • A. Senger
    • 1
  • M. Schmidt
    • 1
  • A. Peters
    • 1
  1. 1.Institut für PhysikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations