Skip to main content
Log in

Multi-color ultrafast laser platform for nonlinear optical imaging based on independently tunable optical parametric oscillators

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on design of a multi-color laser set up that allows for high spectral, time and spatial resolution imaging based on second- and third-order optical nonlinearities in soft condensed matter. Two femtosecond optical parametric oscillators (OPOs) are pumped simultaneously to provide intrinsically synchronized pulses at more than a dozen tunable colors across visible and infrared wavelengths. We demonstrate the use of independently tunable OPOs in a variety of imaging modalities. In one useful application, we explore brain tissue in a two-photon absorption fluorescence imaging experiment with near infrared optical pulses (λ ~ 1,070 nm). We also demonstrate second and sum-frequency generation microscopies in different tissues. Results from application of time-resolved, three-color coherent anti-stokes Raman scattering in tissue are presented to demonstrate feasibility of quantitative spectroscopic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)

    Article  ADS  Google Scholar 

  2. P.J. Campagnola, A.C. Millard, M. Terasaki, P.E. Hoppe, C.J. Malone, W.A. Mohler, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 81, 493–508 (2002)

    Article  Google Scholar 

  3. D. Yelin, Y. Silberberg, Laser scanning third-harmonic generation microscopy in biology. Opt. Express 5(8), 169 (1999)

    Article  ADS  Google Scholar 

  4. D. Débarre, W. Supatto, E. Beaurepaire, Structure sensitivity in third-harmonic generation microscopy. Opt. Lett. 30(16), 2134–2136 (2005)

    Article  ADS  Google Scholar 

  5. A. Zumbusch, G.R. Holtom, X.S. Xie, Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys. Rev. Lett. 82(20), 4142–4145 (1999)

    Article  ADS  Google Scholar 

  6. F.W. Christian, W. Min, B.G. Saar, S. Lu, G.R. Holtom, C. He, J.C. Tsai, J.X. Kang, X.S. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008)

    Article  ADS  Google Scholar 

  7. C.P. Pfeffer, B.R. Olsen, F. Ganikhanov, F. Légaré, Multimodal nonlinear optical imaging of collagen arrays. J. Struct. Biol. 164(1), 140–145 (2008)

    Article  Google Scholar 

  8. R. Araya, J. Jiang, K.B. Eisenthal, R. Yuste, The spine neck filters membrane potentials. PNAS 103(47), 17961–17966 (2006)

    Article  ADS  Google Scholar 

  9. R.M. Williams, W.R. Zipfel, W.W. Webb, Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88, 1377–1386 (2005)

    Article  Google Scholar 

  10. D.A. Dombeck, K.A. Kasischke, H.D. Vishwasrao, M. Ingelsson, B.T. Hyman, W.W. Webb, Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. PNAS 100(12), 7081–7086 (2003)

    Article  ADS  Google Scholar 

  11. S.V. Plotnikov, A.C. Millard, P.J. Campagnola, W.A. Mohler, Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys. J. 90(2), 693–703 (2006)

    Article  ADS  Google Scholar 

  12. C.P. Pfeffer, B.R. Olsen, F. Ganikhanov, F. Légaré, Imaging skeletal muscle using second harmonic generation and coherent anti-stokes Raman scattering microscopy. Biomed. Opt. Express 2(5), 1366–1376 (2011)

    Article  Google Scholar 

  13. C.L. Evans, E.O. Potma, M. Puoris’haag, D. Cote, C.P. Lin, X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. PNAS 102(46), 16807–16812 (2005)

    Article  ADS  Google Scholar 

  14. X. Nan, E.O. Potma, X.S. Xie, Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy. Biophys. J. 91, 728–735 (2006)

    Article  ADS  Google Scholar 

  15. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, E. Beaurepaire, Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3(1), 47–53 (2006)

    Article  Google Scholar 

  16. T. Hellerer, C. Axa¨ng, C. Brackmann, P. Hillertz, M. Pilon, A. Enejder, Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-stokes Raman scattering (CARS) microscopy. PNAS 104(37), 14658–14663 (2007)

    Article  ADS  Google Scholar 

  17. V. Raghunathan, Y. Han, O. Korth, N. Ge, E.O. Potma, Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett. 36(19), 3891–3893 (2011)

    Article  ADS  Google Scholar 

  18. M.D. Duncan, J. Reintjes, T.J. Manuccia, Scanning coherent anti-stokes Raman microscope. Opt. Lett. 7(8), 350–352 (1982)

    Article  ADS  Google Scholar 

  19. M. Hashimoto, T. Araki, S. Kawata, Molecular vibration imaging in the fingerprint region by use of coherent anti-stokes Raman scattering microscopy with a collinear configuration. Opt. Lett. 25(24), 1768–1770 (2000)

    Article  ADS  Google Scholar 

  20. E.O. Potma, D.J. Jones, J.-X. Cheng, X.S. Xie, J. Ye, High-sensitivity coherent anti-stokes Raman scattering microscopy with two tightly synchronized picosecond lasers. Opt. Lett. 27(13), 1168–1170 (2002)

    Article  ADS  Google Scholar 

  21. T.W. Kee, M.T. Cicerone, Simple approach to one-laser, broadband coherent anti-stokes Raman scattering microscopy. Opt. Lett. 29(23), 2701–2703 (2004)

    Article  ADS  Google Scholar 

  22. E.R. Andresen, C.K. Nielsen, J. Thøgersen, S.R. Keiding, Fiber laser-based light source for coherent anti-stokes Raman scattering microspectroscopy. Opt. Express 15, 4848–4856 (2007)

    Article  ADS  Google Scholar 

  23. A.A. Ivanov, A.A. Podshivalov, A.M. Zheltikov, Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-stokes Raman scattering microspectroscopy. Opt. Lett. 31, 3318 (2006)

    Article  ADS  Google Scholar 

  24. A.F. Pegoraro, A. Ridsdale, D.J. Moffatt, Y. Jia, J.P. Pezacki, A. Stolow, Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt. Express 17, 2984 (2009)

    Article  ADS  Google Scholar 

  25. G.I. Petrov, V.V. Yakovlev, Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy. Opt. Express 13, 1299 (2005)

    Article  ADS  Google Scholar 

  26. F. Ganikhanov, S. Carrasco, X.S. Xie, M. Katz, W. Seitz, D. Kopf, Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 1292 (2006)

    Article  ADS  Google Scholar 

  27. M. Jurna, J.P. Korterik, H.L. Offerhaus, C. Otto, Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-stokes Raman scattering spectroscopy and microscopy. Appl. Phys. Lett. 89, 251116 (2006)

    Article  ADS  Google Scholar 

  28. K.V. Bhupathiraju, A.D. Seymour, F. Ganikhanov, Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal. Opt. Lett. 34, 2093 (2009)

    Article  ADS  Google Scholar 

  29. J. Rowley, S. Yang, F. Ganikhanov, Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate. J. Opt. Soc. Am. B 28, 1036 (2011)

    Article  ADS  Google Scholar 

  30. W.S. Pelouch, P.E. Powers, C.L. Tang, Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator. Opt. Lett. 17, 1070–1072 (1992)

    Article  ADS  Google Scholar 

  31. S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, A. Sukhorukov, Nonstationary nonlinear optical effects and ultrashort light pulse formation. IEEE J. Quantum Electron 4, 598–605 (1968)

    Article  ADS  Google Scholar 

  32. E.C. Cheung, J.M. Liu, Theory of a synchronously pumped optical parametric oscillator in steady-state operation. J. Opt. Soc. Am. B 7, 1385–1401 (1990)

    Article  ADS  Google Scholar 

  33. J.C. Bjorkholm, Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators. IEEE J. Quant. Electron. QE-7, 109 (1971)

    Article  ADS  Google Scholar 

  34. S.V. Plotnikov, A.C. Millard, P.J. Campagnola, W.A. Mohler, Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys. J. 90, 693 (2006)

    Article  ADS  Google Scholar 

  35. C.P. Pfeffer, B.R. Olsen, F. Ganikhanov, F. Legare, Imaging skeletal muscle using second harmonic generation and coherent anti-stokes Raman scattering microscopy. Biomed. Opt. Express 2, 1366 (2011)

    Article  Google Scholar 

  36. A. Laubereau, W. Kaiser, Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys. 50, 607 (1978)

    Article  ADS  Google Scholar 

  37. S. Yang, F. Ganikhanov. Dispersion of nonlinear optical susceptibility obtained with femtosecond time-domain coherent anti-stokes Raman scattering. Phys. Rev. Lett. (in review)

  38. L.B. Lyndgaard, K.M. Sørensen, F. van den Berga, S.B. Engelsena, Depth profiling of porcine adipose tissue by Raman spectroscopy. J. Raman Spectrosc. 43, 482 (2012)

    Article  ADS  Google Scholar 

  39. O. Abbas, J.A. Fernández Pierna, R. Codony, C. von Holst, V. Baeten, Assessment of the discrimination of animal fat by FT-Raman spectroscopy. J. Mol. Struct. 924–926, 294 (2009)

    Article  Google Scholar 

  40. A. Hopt, E. Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80, 2029 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors thank professor A. Agmon of Sensory Neuroscience Research Center for providing cortical tissue. FG acknowledges financial support from NSF CAREER award (No0952532), NSF ECCS (award No0925437) grants, and the National Institutes of Health (NIH) NIH/NIGMS CoBRE grant P30 GM103503 and ARRA Supplement S1 to the WVU Center for Neuroscience. Shan Yang’s current address is Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feruz Ganikhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Adhikari, S., Dobbala, M. et al. Multi-color ultrafast laser platform for nonlinear optical imaging based on independently tunable optical parametric oscillators. Appl. Phys. B 111, 617–625 (2013). https://doi.org/10.1007/s00340-013-5381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5381-x

Keywords

Navigation