Skip to main content

Effect of marine derived deoxyribonucleic acid on nonlinear optical properties of PicoGreen dye


We have investigated the effect of DNA on nonlinear absorption of PicoGreen dye using single beam open aperture Z-scan technique in nanosecond regime. We observed reverse saturable absorption at 532 nm for PicoGreen without DNA. In the presence of DNA, the sample begins to behave like saturable absorbers and this effect increased as the concentration of DNA was increased. The dye-intercalated DNA showed SA characteristics near the focus but exhibited RSA characteristics at the focus. Theoretical analysis has been performed using a two-photon absorption model based on nonlinear absorption coefficient and saturation intensity. Such tailoring of optical nonlinear absorption in PicoGreen makes it a potential candidate for photonic application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    A. Steckl, H. Spaeth, H. You, E. Gomez, J.G. Grote, in Optics and Photonics News (2011), p. 35–39

  2. 2.

    J. Yoshida, Y. Kawabe, N. Ogata, in Proceedings of SPIE, vol. 7765 (2010), p. 776506

  3. 3.

    E.F. Gomez, H.D. Spaeth, A.J. Steckl, J.G. Grote, in Proceedings of SPIE, vol. 8103 (2011), p. 81030A–1

  4. 4.

    G.M. Farinola, R. Ragni, Chem. Soc. Rev. 40, 3467–3482 (2011)

    Article  Google Scholar 

  5. 5.

    T. Koyama, Y. Kawabe, N. Ogata, in Proceedings of SPIE, vol. 4464 (2002), p. 248

  6. 6.

    K. Hirata, T. Oyamada, T. Imai, H. Sasabe, C. Adachi, T. Koyama, Appl. Phys. Lett. 85, 9 (2004)

    Article  Google Scholar 

  7. 7.

    J.A. Hagen, W.X. Li, J.G. Grote, A.J. Steckl, Appl. Phys. Lett. 88, 171109 (2006)

    Google Scholar 

  8. 8.

    F. Ouchen, P.P. Yaney, J.G. Grote, in Proceedings of SPIE, vol. 7403 (2009), p. 74030F–1

  9. 9.

    F. Ouchen, P.P. Yaney, C.M. Bartsch, E.M. Heckman, J.G. Grote, in Proceedings of SPIE, vol. 7765 (2010), p. 77650A–1

  10. 10.

    B. Singh, N.S. Sariciftci, J. Appl. Phys. 100, 024514 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    C. Yumusak, B. Singh, N.S. Sariciftci, J. Grote, J. Appl. Phys. 95, 263304 (2009)

    Google Scholar 

  12. 12.

    B. Singh, N.S. Sariciftci, in Proceedings of OEC-06 (2006)

  13. 13.

    N. Ogata, in Proceedings of SPIE, vol. 8103 (2011) pp. 810302–1

  14. 14.

    J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, A. Miniewicz, J. Appl. Phys. 96, 141106 (2010)

    Google Scholar 

  15. 15.

    T. Chida, Y. Kawabe, in Proceedings of SPIE, vol. 8103 (2011), p. 81030P

  16. 16.

    Y. Kawabe, L. Wang, T. Nakamura, N. Ogata, Appl. Phys. Lett. 81(8), 1372 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    I. Braslavsky, B. Hebert, E. Kartalov, S.R. Quake, Proc. Natl. Acad. Sci. 100(7), 3960–3964 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    V.L. Singer, L.J. Jones, S.T. Yue, R.P. Haugland, Anal. Biochem. 249, 228–238 (1997)

    Article  Google Scholar 

  19. 19.

    B. Nithyaja, H. Misha, V.P.N. Nampoori, in Proceedings of SPIE, vol. 8173 (2011), p. 81731K

  20. 20.

    Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, Adv. Mater. 12, 1281 (2000)

    Article  Google Scholar 

  21. 21.

    Z. Yu, W. Li, J.A. Hagen, Y. Zhou, D. Klotzkin, J.G. Grote, A.J. Steckl, Appl. Opt. 46, 1507 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    G.S. He, Q. Zheng, P.N. Prasad, J. Grote, F.K. Hopkins, Opt. Lett. 31(3), 359 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    J.G. Grote, D.E. Diggs, R.L. Nelson, J.S. Zetts, F.K. Hopkins, N. Ogata, J.A. Hagen, E. Heckman, P.P. Yaney, M.O. Stone, L.R. Dalton, Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005)

    Google Scholar 

  24. 24.

    F.D. Lewis, Pure Appl. Chem. 78(12), 2287–2295 (2006)

    Article  Google Scholar 

  25. 25.

    J. Grote, De Y. Zang, F. Ouchen, G. Subramanyam, P. Yaney, C. Bartsch, E. Heckman, R. Naik, in Proceedings of SPIE, vol. 7765 (2010), p. 776502

  26. 26.

    N. Ogata, K. Yamaoka, J. Yoshida, in Proceedings of SPIE, vol. 7765 (2010), p. 776508

  27. 27.

    H. Zipper, H. Brunner, J. Bernhagen, F. Vitzthum, Nucleic Acids Res. 32(12), e103 (2004)

    Article  Google Scholar 

  28. 28.

    G. Cosa, K.S. Focsaneanu, J.R.N. McLean, J.P. McNamee, J.C. Scaiano, Photochem. Photobiol. 73, 585–599 (2001)

    Article  Google Scholar 

  29. 29.

    J.G. Grote, E.M. Heckman, D.E. Diggs, Proc. SPIE 5934, 593406 (2005)

    Article  Google Scholar 

  30. 30.

    G. Zhang, H. Takahashi, L. Wang, J. Yoshida, S. Kobayathi, S. Horinouchi, N. Ogata, in Proceedings of SPIE, vol. 4905 (2002), p. 375

  31. 31.

    A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, J.G. Grote, Appl. Phys. Lett. 91, 041118 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    B. Nithyaja, H. Misha, P. Radhakrishnan, V.P.N. Nampoori, J. Appl. Phys. 109, 023110 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    S.V. Rao, N.K.M.N. Srinivas, D.N. Rao, Chem. Phys. Lett. 361, 439–445 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    N.K.M.N. Srinivas, S.V. Rao, D.N. Rao, J. Opt. Soc. Am. B. 20, 2470 (2003)

    ADS  Article  Google Scholar 

  35. 35.

    Y.C. Gao, X.R. Zhang, Y.L. Li, H.F. Liu, Y.X. Wang, Q. Chang, W.Y. Jiao, Y.L. Song, Opt. Commun. 251, 429 (2005)

    ADS  Article  Google Scholar 

  36. 36.

    Z.B. Liu, Y. Wang, X.L. Zhang, Y.F. Xu, Y.S. Chen, J.G. Tian, Appl. Phys. Lett. 94, 021902 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    R.R. Rojo, L. Stranges, A.K. Kar, M.A.M. Rojas, W.H. Watson, Opt. Commun. 203, 385 (2002)

    ADS  Article  Google Scholar 

  38. 38.

    J. He, W. Ji, G.H. Ma, S.H. Tang, H.I. Elim, W.X. Sun, J. Appl. Phys. 95, 6381 (2004)

    ADS  Article  Google Scholar 

  39. 39.

    T. Cassano, R. Tommasi, A.P. Meacham, M.D. Ward, J. Chem. Phys. 122, 154507 (2005)

    ADS  Article  Google Scholar 

  40. 40.

    B. Karthikeyan, M. Anija, C.S.S. Sandeep, T.M.M. Nadeer, R. Philip, Optics Commun. 281, 2933–2937 (2008)

    ADS  Article  Google Scholar 

  41. 41.

    M.S. Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    ADS  Article  Google Scholar 

Download references


C.P. and V. P. N. N. gratefully acknowledge the Council of Scientific and Industrial Research, India for funding and fellowship through Emeritus Scientist scheme. The authors also acknowledge Department of Science and Technology, India for partial funding through PURSE program. C.P acknowledges his colleagues, Mr. Bejoy Varghese and Mr. C. L. Linslal for their help with Matlab code.

Author information



Corresponding author

Correspondence to C. Pradeep.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pradeep, C., Mathew, S., Nithyaja, B. et al. Effect of marine derived deoxyribonucleic acid on nonlinear optical properties of PicoGreen dye. Appl. Phys. B 111, 611–615 (2013).

Download citation


  • Nonlinear Absorption
  • Input Intensity
  • Incident Intensity
  • Open Aperture
  • Nonlinear Absorption Coefficient