Skip to main content
Log in

Spin polarization in a freely evolving sample of cold atoms

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have implemented and optimized a technique of spin polarization by optical pumping in a caesium atomic fountain, gaining a nearly fivefold increase in the useful cold atom signal in detection. This allows an improvement of the fountain clock stability without compromising its accuracy. We present a detailed study of optical pumping in a freely evolving cloud of cold caesium atoms: we have investigated theoretically and experimentally the dynamics of the pumping process and the associated heating due to random photon scattering. The heating limits the potential gain in the fountain signal due to an additional cloud expansion. A high degree of spin polarization was achieved with accumulation of up to 97 % of the population in a single magnetic (m F  = 0) sublevel of the ground state. Factors affecting the achievable spin polarizations, such as the purity of the pumping light polarization and the shadowing effect in the cloud, were considered. This technique may also be used in atom interferometers and for other alkali metal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Happer, Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  2. T.G. Walker, W. Happer, Rev. Mod. Phys. 69, 629 (1997)

    Article  ADS  Google Scholar 

  3. R. Wynands, S. Weyers, Metrologia 42, S64 (2005)

    Article  ADS  Google Scholar 

  4. W. Chalupczak, K. Szymaniec, Phys. Rev. A 71, 053410 (2005)

    Article  ADS  Google Scholar 

  5. G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, P. Cerez, Phys. Rev. A 36, 3719 (1987)

    Article  ADS  Google Scholar 

  6. S.-I. Ohsima, Y. Nakadan, Y. Koga, IEEE Trans. Instrum. Meas. 37, 409 (1988)

    Article  Google Scholar 

  7. A. Besedina, A. Gevorkyan, and V. Zholnerov, in Proceedings Joint Meeting International Frequency Control Symposium and European Frequency and Time Forum (2007), p. 623

  8. G. Di Domenico, L. Devenoges, C. Dumas, P. Thomann, Phys. Rev. A 82, 053417 (2010)

    Article  ADS  Google Scholar 

  9. A.R. Gorges, A.J. Foxley, D.M. French, C.M. Ryan, J.L. Roberts, Phys. Rev. A 75, 053403 (2007)

    Article  ADS  Google Scholar 

  10. H.J. Lee, S. Chu, Phys. Rev. A 57, 2905 (1998)

    Article  ADS  Google Scholar 

  11. Y.-C. Chen, Y.-A. Liao, L. Hsu, I.A. Yu, Phys. Rev. A 64, 031401 (2001)

    Article  ADS  Google Scholar 

  12. J.M. Choi, J.M. Kim, S.Y. Jeong, D. Cho, J. Korean Phys Soc. 46, 425 (2005)

    Google Scholar 

  13. K. Szymaniec, S.E. Park, IEEE Trans. Instrum. Meas. 60, 2475 (2011)

    Article  Google Scholar 

  14. P. Tremblay, C. Jacques, Phys. Rev. A 41, 4989 (1990)

    Article  ADS  Google Scholar 

  15. J.J. McClelland, in Atomic, molecular, and optical physics: atoms and molecules, ed. by F.B. Dunning, R.G. Hulet (Academic Press, San Diego, 1995), p. 145

    Google Scholar 

  16. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  17. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  18. K. Szymaniec, S.E. Park, G. Marra, W. Chalupczak, Metrologia 47, 363 (2010)

    Article  ADS  Google Scholar 

  19. R. Li, K. Gibble, K. Szymaniec, Metrologia 48, 283 (2011)

    Article  ADS  Google Scholar 

  20. K. Szymaniec, W. Chalupczak, E. Tiesinga, C.J. Williams, S. Weyers, R. Wynands, Phys. Rev. Lett. 98, 153002 (2007)

    Article  ADS  Google Scholar 

  21. D. Tupa, L.W. Anderson, Phys. Rev. A 36, 2142 (1987)

    Article  ADS  Google Scholar 

  22. Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, C. Williams, Phys. Rev. Lett. 85, 3117 (2000)

    Article  ADS  Google Scholar 

  23. K. Szymaniec, W. Chalupczak, S. Weyers, R. Wynands, Appl. Phys. B 89, 187 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funds are acknowledged from the UK National Measurement Office, National Research Foundation of Korea (Grant 2011-0009886) and KRISS (Grant 12011001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Szymaniec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymaniec, K., Noh, HR., Park, S.E. et al. Spin polarization in a freely evolving sample of cold atoms. Appl. Phys. B 111, 527–535 (2013). https://doi.org/10.1007/s00340-013-5368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5368-7

Keywords

Navigation