Applied Physics B

, Volume 111, Issue 3, pp 433–446 | Cite as

Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

  • Shanmugam Aravazhi
  • Dimitri Geskus
  • Koop van Dalfsen
  • Sergio A. Vázquez-Córdova
  • Christos Grivas
  • Uwe Griebner
  • Sonia M. García-Blanco
  • Markus Pollnau


Single-crystalline KY1−x−y−z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.


Lattice Mismatch Planar Waveguide Channel Waveguide Grown Layer Refractive Index Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank A. Hollink for technical assistance with the growth setup, Yaroslav E. Romanyuk for helpful discussions, and Martin Krejci from Oclaro Inc. for providing the diode bar. This project was financially supported by The Netherlands Organization for Scientific Research (NWO) through the VICI Grant no. 07207 “Photonic integrated structures”.


  1. 1.
    M. Pollnau, Y.E. Romanyuk, F. Gardillou, C.N. Borca, U. Griebner, S. Rivier, V. Petrov, Double tungstate lasers: from bulk toward on-chip integrated waveguide devices. IEEE J. Sel. Top. Quantum Electron. 13, 661–671 (2007)CrossRefGoogle Scholar
  2. 2.
    A.A. Kaminskii, A.F. Konstantinova, V.P. Orekhova, A.V. Butashin, R.F. Klevtsova, A.A. Pavlyuk, Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals. Crystallogr. Rep. 46, 665–672 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov, Diode-pumped CW lasing of Yb:KYW and Yb:KGW. Opt. Commun. 165, 71–75 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    N.V. Kuleshov, A.A. Lagatsky, V.G. Shcherbitsky, V.P. Mikhailov, E. Heumann, T. Jensen, A. Diening, G. Huber, CW laser performance of Yb and Er, Yb doped tungstates. Appl. Phys. B 64, 409–413 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    N.V. Kuleshov, A.A. Lagatsky, A.V. Podlipensky, V.P. Mikhailov, G. Huber, Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Opt. Lett. 22, 1317–1319 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, M. Aguiló, Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix. J. Appl. Crystallogr. 35, 108–112 (2002)CrossRefGoogle Scholar
  7. 7.
    I.M. Krygin, A.D. Prokhorov, V.P. D’yakonov, M.T. Borowiec, H. Szymczak, Spin-spin interaction of Dy3+ ions in KY(WO4)2. Phys. Solid State 44, 1587–1596 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth 275, 135–140 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO4)2. Phys. Rev. B 65, 165121 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Laser operation of the new stoichiometric crystal KYb(WO4)2. Appl. Phys. B 74, 185–189 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Borisov, R.F. Klevtsova, Crystal structure of KY(WO4)2. Sov. Phys. Crystallogr. 13, 420–421 (1968). (Transl.: Kristallografiya 13, 517-519 (1968))Google Scholar
  12. 12.
    P.V. Klevtsov, L.P. Kozeeva, Synthesis X-ray and thermographic study of potassium rare-earth tungstates, KLn(WO4)2, Ln = rare-earth elements. Sov. Phys. Doklady 14, 185–187 (1969). (Transl.: Doklady Akademii Nauk SSSR 185, 571-574 (1969))ADSGoogle Scholar
  13. 13.
    M.C. Pujol, M. Aguiló, F. Díaz, C. Zaldo, Growth and characterisation of monoclinic KGd1-xREx(WO4)2 single crystals. Opt. Mater. 13, 33–40 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    G. Métrat, M. Boudeulle, N. Muhlstein, A. Brenier, G. Boulon, Nucleation, morphology and spectroscopic properties of Yb3+-doped KY(WO4)2 crystals grown by the top nucleated floating crystal method. J. Cryst. Growth 197, 883–888 (1999)CrossRefGoogle Scholar
  15. 15.
    Y.E. Romanyuk, Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2006)Google Scholar
  16. 16.
    P.V. Klevtsov, L.P. Kozeeva, R.F. Klevtsova, Crystallographic study of potassium-yttrium tungstate and molybdate. Izv. Akad. Nauk SSSR Neorgan. Mater. 4, 1147–1151 (1968)Google Scholar
  17. 17.
    E. Gallucci, C. Goutaudier, G. Boulon, M.T. Cohen-Adad, Growth of KY(WO4)2 single crystal: investigation of the WO3 rich region in the K2O–Y2O3-WO3 ternary system. 2. The KY(WO4)2 crystallization field. Eur. J. Solid State Inorg. Chem. 35, 433–445 (1998)CrossRefGoogle Scholar
  18. 18.
    R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, F. Díaz, Growth of β-KGd1-xNdx(WO4)2 single crystals in K2W2O7 solvents. J. Cryst. Growth 169, 600–603 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Y.E. Romanyuk, C.N. Borca, M. Pollnau, S. Rivier, V. Petrov, U. Griebner, Yb-doped KY(WO4)2 planar waveguide laser. Opt. Lett. 31, 53–55 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    F. Gardillou, Y.E. Romanyuk, C.N. Borca, R.P. Salathé, M. Pollnau, Lu, Gd co-doped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2. Opt. Lett. 32, 488–490 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, M. Pollnau, Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser. Opt. Express 18, 8853–8858 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D. Geskus, S. Aravazhi, E.H. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, M. Pollnau, Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers. Laser Phys. Lett. 6, 800–805 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    D. Geskus, S. Aravazhi, K. Wörhoff, M. Pollnau, High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers. Opt. Express 18, 26107–26112 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    D. Geskus, S. Aravazhi, S.M. García-Blanco, M. Pollnau, Giant optical gain in a rare-earth-ion-doped microstructure. Adv. Mater. 24, OP19–OP22 (2012)CrossRefGoogle Scholar
  25. 25.
    D. Geskus et al. Highly efficient channel waveguide laser at the 981-nm zero-line of Yb3+. (are preparing a manuscript)Google Scholar
  26. 26.
    M.C. Pujol, R. Solé, J. Massons, J. Gavaldà, X. Solans, C. Zaldo, F. Díaz, M. Aguiló, Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution. J. Appl. Crystallogr. 34, 1–6 (2001)CrossRefGoogle Scholar
  27. 27.
    M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguiló, Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals. Mater. Sci. Forum 378, 710–717 (2001)CrossRefGoogle Scholar
  28. 28.
    M.C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, M. Aguiló, Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2. J. Appl. Crystallogr. 39, 230–236 (2006)CrossRefGoogle Scholar
  29. 29.
    L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)ADSCrossRefGoogle Scholar
  30. 30.
    M.C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikonov, X. Solans, M. Aguiló, F. Díaz, Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals. Appl. Phys. B 68, 187–197 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    R. Jansson, H. Arwin, Selection of the physically correct solution in the n-media Bruggeman effective medium approximation. Opt. Commun. 106, 133–138 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    R. Ulrich, R. Torge, Measurement of thin-film parameters with a prism coupler. Appl. Opt. 12, 2901–2908 (1973)ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    S. Biswal, S.P. O’Connor, S.R. Bowman, Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate. Appl. Opt. 44, 3093–3097 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    H. Liu, J. Nees, G. Mourou, Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser. Opt. Lett. 26, 1723–1725 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    B.F. Aull, H.P. Jenssen, Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron. 18, 925–930 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    D.E. McCumber, Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 136, A954–A957 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    A. Major, I. Nikolakakos, J.S. Aitchison, A.I. Ferguson, N. Langford, P.W.E. Smith, Characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO4)2. Appl. Phys. B 77, 433–436 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, V. Petrov, U. Griebner, Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate. Opt. Mater. 28, 519–523 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3. Opt. Mater. 24, 103–109 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    L.J. McKnight, S. Calvez, Gain-guided KYb(WO4)2 laser, in Digest of Europhoton Conference 2010, Europhysics Conference Abstract Vol. 34C (European Physical Society, Mulhouse, 2010), p. 24, paper WeP19Google Scholar
  42. 42.
    U. Griebner, R. Grunwald, H. Schönnagel, Thermally bonded Yb:YAG planar waveguide laser. Opt. Commun. 164, 185–190 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    R.P. Soon, O. Beom-Hoan, Novel design concept of waveguide mode adapter for low-loss mode conversion. IEEE Photon. Technol. Lett. 13, 675–677 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shanmugam Aravazhi
    • 1
  • Dimitri Geskus
    • 1
  • Koop van Dalfsen
    • 1
  • Sergio A. Vázquez-Córdova
    • 1
  • Christos Grivas
    • 1
    • 2
  • Uwe Griebner
    • 3
  • Sonia M. García-Blanco
    • 1
  • Markus Pollnau
    • 1
  1. 1.Integrated Optical MicroSystems Group, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.On leave from: Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK
  3. 3.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany

Personalised recommendations