Skip to main content

Quantitative Radar REMPI measurements of methyl radicals in flames at atmospheric pressure

Abstract

Spatially resolved quantitative measurements of methyl radicals (CH3) in CH4/air flames at atmospheric pressure have been achieved using coherent microwave Rayleigh scattering from Resonance enhanced multi-photon ionization, Radar REMPI. Relative direct measurements of the methyl radicals were conducted by Radar REMPI via the two-photon resonance of the \( 3p^{2} A_{2}^{\prime \prime } 0_{0}^{0} \) state and subsequent one-photon ionization. Due to the proximity of the argon resonance state of 2s 22p 54f [7/2, J = 4](4+1 REMPI by 332.5 nm) with the CH3 state of \( 3p^{2} A_{2}^{\prime \prime } 0_{0}^{0} \) (2+1 REMPI by 333.6 nm), in situ calibration with argon was performed to quantify the absolute concentration of CH3. The REMPI cross sections of CH3 and argon were calculated based on time-dependent quantum perturbation theory. The measured CH3 concentration in CH4/air flames was in good agreement with numerical simulations performed using detailed chemical kinetics. The Radar REMPI method has shown great flexibility for spatial scanning, large signal-to-noise ratio for measurements at atmospheric pressures, and significant potential to be straightforwardly generalized for the quantitative measurements of other radicals and intermediate species in practical and relevant combustion environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. C.K. Law, Combustion Physics, 1st edn. (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  2. R.P. Wayne, Chemistry of atmospheres: an introduction to the chemistry of the atmospheres of earth, the planets, and their satellites (Oxford University Press, Oxford, 2000)

    Google Scholar 

  3. P. Zalicki, R.N. Zare, J. Chem. Phys. 102(7), 2708–2717 (1995)

    Article  ADS  Google Scholar 

  4. F. Wang, J.-S. Lin, K. Liu, Science 331(6019), 900–903 (2011)

    Article  ADS  Google Scholar 

  5. W. Zhang, H. Kawamata, K. Liu, Science 325(5938), 303–306 (2009)

    Article  ADS  Google Scholar 

  6. M. Frenklach, Phys. Chem. Chem. Phys. 4(11), 2028–2037 (2002)

    Article  Google Scholar 

  7. N.L. Arthur, J. Chem. Soc. Faraday Trans. 2 mol. Chem. Phys. 82(3), 331–336 (1986)

    Article  Google Scholar 

  8. J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw, J. Chem. Phys. 107(16), 6196–6203 (1997)

    Article  ADS  Google Scholar 

  9. P. Zalicki, Y. Ma, R.N. Zare, E.H. Wahl, J.R. Dadamio, T.G. Owano, C.H. Kruger, Chem. Phys. Lett. 234(4–6), 269–274 (1995)

    Article  ADS  Google Scholar 

  10. K.C. Smyth, D.R. Crosley, in Applied Combustion Diagnostics, ed. by K. Kohse-Hoinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002)

  11. K.C. Smyth, P.J.H. Tjossem, Appl. Opt. 29(33), 4891–4898 (1990)

    Article  ADS  Google Scholar 

  12. T.A. Cool, Appl. Opt. 23, 10 (1984)

    Article  Google Scholar 

  13. V. Sick, M.N. Bui-Pham, R.L. Farrow, Opt. Lett. 20(19), 2036–2038 (1995)

    Article  ADS  Google Scholar 

  14. J. Kiefer, P. Ewart, Prog. Energy Combust. Sci. 37(5), 525–564 (2011)

    Article  Google Scholar 

  15. K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 20(3), 203–279 (1994)

    Article  Google Scholar 

  16. C. Kassner, P. Heinrich, F. Stuhl, S. Couris, S. Haritakis, Chem. Phys. Lett. 208(1–2), 27–31 (1993)

    Article  ADS  Google Scholar 

  17. S.W. North, D.A. Blank, P.M. Chu, Y.T. Lee, J. Chem. Phys. 102(2), 792–798 (1995)

    Article  ADS  Google Scholar 

  18. C. Kassner, F. Stuhl, Chem. Phys. Lett. 222(5), 425–430 (1994)

    Article  ADS  Google Scholar 

  19. P. Desgroux, L. Gasnot, B. Crunelle, J.F. Pauwels, Symposium (International) on Combustion 26(1), 967–974 (1996)

    Google Scholar 

  20. Y. Wu, A. Bottom, Z. Zhang, T.M. Ombrello, V.R. Katta, Opt. Express 19(24), 23997–24004 (2011)

    Article  ADS  Google Scholar 

  21. Y. Wu, Z. Zhang, S.F. Adams, Chem. Phys. Lett. 513(4–6), 191–194 (2011)

    Article  ADS  Google Scholar 

  22. Z. Zhang, (Princeton University, Princeton, NJ, 2008)

  23. Z. Zhang, M. Shneider, R. Miles, Phys. Rev. Lett. 98(26), 265005 (2007)

    Article  ADS  Google Scholar 

  24. N.M. Khambatta, L.J. Radziemski, S.N. Dixit, Phys. Rev. A 39(8), 3842–3845 (1989)

    Article  ADS  Google Scholar 

  25. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Los Angeles, 1981)

    Google Scholar 

  26. A. Siegel, J. Ganz, W. Bussert, H. Hotop, J. Phys. B At. Mol. Phys. 16(16), 2945 (1983)

    Article  ADS  Google Scholar 

  27. M.D. Perry, O.L. Landen, Phys. Rev. A 38(6), 2815–2829 (1988)

    Article  ADS  Google Scholar 

  28. A.M. Mebel, S.-H. Lin, Chem. Phys. 215(3), 329–341 (1997)

    Article  ADS  Google Scholar 

  29. A.M. Velasco, I. Martin, C. Lavín, Chem. Phys. Lett. 264(6), 579–583 (1997)

    Article  ADS  Google Scholar 

  30. M.A. Childs, K.L. Menningen, L.W. Anderson, J.E. Lawler, Chem. Phys. Lett. 246(6), 567–570 (1995)

    Article  ADS  Google Scholar 

  31. M.J. Pilling, A.M. Bass, W. Braun, Chem. Phys. Lett. 9(2), 147–148 (1971)

    Article  ADS  Google Scholar 

  32. J. Zhou, J.J. Lin, W. Shiu, S.-C. Pu, K. Liu, J. Chem. Phys. 119(5), 2538–2544 (2003)

    Article  ADS  Google Scholar 

  33. V.A. Shubert, S.T. Pratt, J. Phys. Chem. A 114(42), 11238–11243 (2010)

    Article  Google Scholar 

  34. C.A. Taatjes, D.L. Osborn, T.M. Selby, G. Meloni, H. Fan, S.T. Pratt, J. Phys. Chem. A 112(39), 9336–9343 (2008)

    Article  Google Scholar 

  35. B.R. Gans, G.A. Garcia, S.V. Boyé-Péronne, J.-C. Loison, S.P. Douin, F.O. Gaie-Levrel, D. Gauyacq, J. Phys. Chem. A 115(21), 5387–5396 (2011)

    Google Scholar 

  36. J.-C. Loison, J. Phys. Chem. A 114(23), 6515–6520 (2010)

    Article  Google Scholar 

  37. W.M. Roquemore, V.R. Katta, J. Vis. 2(3,4), 257–272 (1999)

    Google Scholar 

  38. W.M. Roquemore, V.R. Katta, J. Vis. 2, 257–272 (2000)

    Article  Google Scholar 

  39. V.R. Katta, L.P. Goss, W.M. Roquemore, Combust. Flame 96(1–2), 60–74 (1994)

    Article  Google Scholar 

  40. V.R. Katta, L.P. Goss, W.M. Roquemore, Aiaa J. 32(1), 84–94 (1994)

    Article  ADS  Google Scholar 

  41. V.R. Katta, L.P. Goss, W.M. Roquemore, Int. J. Numer. Methods Heat Fluid Flow 4(5), 413–424 (1994)

    Article  MATH  Google Scholar 

  42. F. Takahashi, W. John Schmoll, V.R. Katta, Symp. (International) Combust. 27(1), 675–684 (1998)

Download references

Acknowledgments

The work at the University of Tennessee Knoxville was supported by NSF CBET-1032523. We also thank Dr. James R. Gord, Dr. Sukesh Roy and Dr. Hans Stauffer at the Air Force Research Laboratory for insightful discussions with regard to multiphoton ionization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, Y., Zhang, Z., Ombrello, T.M. et al. Quantitative Radar REMPI measurements of methyl radicals in flames at atmospheric pressure. Appl. Phys. B 111, 391–397 (2013). https://doi.org/10.1007/s00340-013-5345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5345-1

Keywords

  • Flame Front
  • Burner Surface
  • Liftoff Height
  • Fuel Tube
  • Detailed Chemical Kinetic