Skip to main content
Log in

Free-running and Q-switched operation of a diode pumped Er:YSGG laser at the 3 μm transition

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A study is made of a diode pumped Er3+:YSGG laser crystal operating at 2.797 μm. Lasers were constructed in the bounce geometry, using a transversely cooled 50 at.% Er:YSGG slab and a face-cooled 38 at.% Er:YSGG slab. Results from these are compared with those from a 50 at.% Er3+:YAG laser, also in the bounce geometry. With quasi-continuous wave diode pumping, free-running pulse energies of up to ~55 mJ and a slope efficiency of 20.5% are obtained from 50 at.% Er:YSGG. Better thermal performance is obtained from the face-cooled 38 at.% Er:YSGG slab, allowing average power of ~2 W to be obtained at a repetition rate and pump pulse duration of 140 Hz and 500 μs, respectively. Both Er:YSGG systems perform better than Er:YAG. Numerical modelling of the free-running 50 at.% Er:YSGG and Er:YAG systems is undertaken with good qualitative agreement with experimental results. Electro-optic Q-switching of the 50 at.% Er:YSGG laser using a LiNbO3 crystal yields ~0.5 mJ pulses with ~77 ns duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Georgescu, O. Toma, IEEE J. Quantum Electron 11, 682 (2005)

    Article  Google Scholar 

  2. K.L. Vodopyanov, Opt. Commun. 150, 210 (1998)

    Article  ADS  Google Scholar 

  3. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade, Opt. Laser Eng. 44, 699 (2006)

    Article  Google Scholar 

  4. A. Godard, C. R. Phys. 8, 1100 (2007)

    Article  ADS  Google Scholar 

  5. B.J. Dinerman, P.F. Moulton, Opt. Lett. 19, 1143 (1994)

    Article  ADS  Google Scholar 

  6. C. Ziolek, H. Ernst, G.F. Will, H. Lubatschowski, H. Welling, W. Ertmer, Opt. Lett. 26, 599 (2001)

    Article  ADS  Google Scholar 

  7. C.E. Hamilton, R.J. Beach, S.B. Sutton, L.H. Furu, W.F. Krupke, Opt. Lett. 19, 1627 (1994)

    Article  ADS  Google Scholar 

  8. D. Chen, C.L. Fincher, T.S. Rose, F.L. Vernon, R.A. Fields, Opt. Lett. 24, 385 (1999)

    Article  ADS  Google Scholar 

  9. J.S. Liu, J.J. Liu, Y. Tang, Laser Phys. 18, 1124 (2008)

    Article  ADS  Google Scholar 

  10. R. Waarts, D. Nam, S. Sanders, J. Harrison, B.J. Dinerman, Opt. Lett. 19, 1738 (1994)

    Article  ADS  Google Scholar 

  11. T. Jensen, G. Huber, K. Petermann, OSA TOPS on advanced solid-state lasers Vol. 1, 306 (1996)

  12. S. Georgescu, Mathematical modelling of 3 μm erbium lasers, in Proceedings of The First French-Romanian Colloquium of Numerical Physics (2000)

  13. M.A. Noginov, S.G. Semenkov, V.A. Smirnov, I.A. Shcherbakov, Opt. Spectrosc. 69, 74 (1990)

    ADS  Google Scholar 

  14. V. Lupei, S. Georgescu, V. Florea, Opt. Commun. 92, 67 (1992)

    Article  ADS  Google Scholar 

  15. D.K. Sardar, C.C. Russell, J.B. Gruber, T.H. Allik, J. Appl. Phys. 97, 123501 (2005)

    Article  ADS  Google Scholar 

  16. B.J. Dinerman, Spectroscopic characterization and 3-μm CW laser operation of Er 3+ :Gd 3 Ga 5 O 12 and Er 3+ :Y 3 Sc 2 Ga 3 O 12 , Ph.D. dissertation (Boston College Graduate School of Arts and Sciences, Boston, 1994)

    Google Scholar 

  17. E. Arbabzadah, S. Chard, H. Amrania, C.C. Phillips, M.J. Damzen, Opt. Express 19, 25860 (2011)

    Article  ADS  Google Scholar 

  18. P.F. Moulton, J.G. Manni, G.A. Rines, IEEE J. Quantum Electron 24, 960 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Arbabzadah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbabzadah, E.A., Phillips, C.C. & Damzen, M.J. Free-running and Q-switched operation of a diode pumped Er:YSGG laser at the 3 μm transition. Appl. Phys. B 111, 333–339 (2013). https://doi.org/10.1007/s00340-013-5337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5337-1

Keywords

Navigation