Skip to main content
Log in

Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To clarify the advantages of Cr:Nd:YAG ceramics rods in solar-pumped lasers, a fused silica light guide with rectangular cross-section is coupled to a compound V-shaped cavity within which a 7 mm diameter 0.1 at.% Cr:1.0 at.% Nd:YAG ceramic rod is uniformly pumped. The highly concentrated solar radiation at the focal spot of a 2 m diameter stationary parabolic mirror is transformed into a uniform pump radiation by the light guide. Efficient pump light absorption is achieved by pumping uniformly the ceramic rod within the V-shaped cavity. Optimum pumping parameters and solar laser output powers are found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 33.6 W continuous-wave laser power is measured, corresponding to 1.32 times enhancement over our previous results with a 4 mm diameter Nd:YAG single-crystal rod. High slope efficiency of 2.6 % is also registered. The solar laser output performances of both the ceramic and the single-crystal rods are finally compared, revealing the relative advantage of the Cr:Nd:YAG rod in conversion efficiency. Low scattering coefficient of 0.0018 cm−1 is deduced for the ceramic rod. Heat load is considered as a key factor affecting the ceramic laser output performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Graham-Rowe, Nat. Photonics 4, 64 (2010)

    Article  ADS  Google Scholar 

  2. T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, C. Baasandash, Appl. Phys. Lett. 90, 261120 (2007)

    Article  ADS  Google Scholar 

  3. C.W. Young, Appl. Opt. 5, 993 (1966)

    Article  ADS  Google Scholar 

  4. H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, Jpn. J. Appl. Phys. 23, 1051 (1984)

    Article  ADS  Google Scholar 

  5. M. Weksler, J. Shwartz, IEEE J. Quantum Electron. 24, 1222 (1988)

    Article  ADS  Google Scholar 

  6. V. Krupkin, J.A. Kagan, A. Yogev, Proc. SPIE 2016, 50 (1993)

    Article  ADS  Google Scholar 

  7. M. Lando, J. Kagan, B. Linyekin, V. Dobrusin, Opt. Commun. 222, 371 (2003)

    Article  ADS  Google Scholar 

  8. D. Liang, J. Almeida, Opt. Express 19, 26399 (2011)

    Article  ADS  Google Scholar 

  9. T.H. Dinh, T. Ohkubo, T. Yabe, H. Kuboyama, Opt. Lett. 37, 2670 (2012)

    Article  ADS  Google Scholar 

  10. J. Almeida, D. Liang, E. Guillot, Opt. Laser Technol. 44, 2115 (2012)

    Article  ADS  Google Scholar 

  11. T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, C. Yamanaka, Jpn. J. Appl. Phys. 46, 156 (2007)

    Article  ADS  Google Scholar 

  12. T. Saiki, S. Motokoshi, K. Imasaki, K. Fujioka, H. Yoshida, H. Fujita, M. Nakatsuka, C. Yamanaka, Opt. Commun. 282, 1358 (2009)

    Article  ADS  Google Scholar 

  13. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, K. Ueda, Jpn. J. Appl. Phys. 45, 133 (2006)

    Article  ADS  Google Scholar 

  14. S. Zhao, A. Rapaport, J. Dong, B. Chen, P. Deng, M. Bass, Opt. Laser Technol. 38, 645 (2012)

    Article  ADS  Google Scholar 

  15. ASTM G173-03 (2012)

  16. T. Brand, Opt. Lett. 20, 1776 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  17. W.T. Welford, R. Winston, High Collection Nonimaging Optics (Academic Press, New York, 1989)

    Google Scholar 

  18. M. Endo, Opt. Laser Technol. 42, 610 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research project (PTDC/FIS/103599/2008) was funded by the Science and Technology Foundation of Portuguese Ministry of Science, Technology and Higher Education (FCT-MCTES). Financial support by the Access to Research Infrastructures activity in the seventh Framework Program of the EU (SFERA Grant Agreement no. 228296) is gratefully acknowledged. We would like to express our thanks to Dr. Takashi Ito from Baikowski Japan Co. Ltd. for the helpful discussions about the scattering properties of the 0.1 % Cr:1.0 % Nd:YAG ceramic rod.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, D., Almeida, J. & Guillot, E. Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser. Appl. Phys. B 111, 305–311 (2013). https://doi.org/10.1007/s00340-013-5334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5334-4

Keywords

Navigation