Skip to main content
Log in

Measurement of the pH value in pork meat early postmortem by Raman spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The pH of a muscle is an accepted parameter to identify normal and deviating meat qualities. In this work, Raman spectroscopy is shown to be suitable for the non-invasive measurement of the early postmortem pH of meat. Raman spectra of ten pork semimembranosus muscles were recorded with a portable handheld device 0.5–24 h postmortem. The spectra were correlated with pH and lactate kinetics measured in parallel. Seven of the muscles were normal, two exhibited accelerated glycolysis and one showed absence of acidification. The pH decline with time could be calculated from the Raman spectra with the Henderson–Hasselbalch equation using only two signals of phosphate vibrations at 980 and 1,080 cm−1 with a close correlation for each muscle, but larger variations between animals. More robust and better correlations for all muscles were obtained with a linear model based on 11 signals from lactate, lactic acid, phosphate, a carbonyl band and nucleotides resulting in R 2 = 0.78 and RMSECV = 0.2 or a partial least-square model using the complete spectrum (R 2 = 0.94 and RMSECV = 0.2). These results show the potential of Raman spectroscopy for an online detection of the pH and thus meat qualities during meat processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Henckel, A. Karlsson, N. Oksbjerg, J.S. Petersen, Meat Sci. 55, 131–138 (2000)

    Article  Google Scholar 

  2. T.L. Scheffler, D.E. Gerrard, Meat Sci. 77, 7–16 (2007)

    Article  Google Scholar 

  3. R.D. Warner, R.G. Kauffman, M.L. Greaser, Meat Sci. 45(3), 339–352 (1997)

    Article  Google Scholar 

  4. H. Schmidt, K. Sowoidnich, M. Maiwald, B. Sumpf, H.-D. Kronfeldt, Proc. SPIE 73120H, 1–8 (2009)

    Google Scholar 

  5. B.G. Frushour, J.L. Koenig, Raman spectroscopy of proteins. in Advances in Infrared and Raman Spectroscopy (Heyden, London, 1975)

  6. T.G. Spiro, B.P. Gaber, Annu. Rev. Biochem. 46, 553–572 (1977)

    Article  Google Scholar 

  7. M. Berjot, J. Marx, A.J.P. Alix, J. Raman Spectrosc. 18, 289–300 (1987)

    Article  ADS  Google Scholar 

  8. T.-J. Yu, J.L. Lippert, W.L. Peticolas, Biopolymers 12, 2161–2176 (1973)

    Article  Google Scholar 

  9. J.L. Koenig, B. Frushour, Biopolymers 11, 1871–1892 (1972)

    Article  Google Scholar 

  10. R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research (Oxford University Press, Oxford, 1989)

    Google Scholar 

  11. J.G. Mesu, T. Visser, F. Soulimani, B.M. Weckhuysen, Vib. Spectrosc. 39, 114–125 (2005)

    Article  Google Scholar 

  12. K.T. Yue, M. Lee, J. Zheng, R. Callender, Biochim. Biophys. Acta 1078, 296–302 (1991)

    Article  Google Scholar 

  13. L. Rimai, T. Cole, J.L. Parsons, J.T. Hickmott Jr, E.B. Carew, Biophys. J. 9(3), 320–329 (1969)

    Article  ADS  Google Scholar 

  14. W.D. McElroy, B. Glass, Phosphorus Metabolism, vol. I (Johns Hopkins University Press, Baltimore, 1951)

    Google Scholar 

  15. Y. Xie, Y. Jiang, D. Ben-Amotz, Anal. Biochem. 343, 223–230 (2005)

    Article  Google Scholar 

  16. L. Rimai, M.E. Heyde, Biochemistry 10(7), 1121–1128 (1971)

    Article  Google Scholar 

  17. R.B. Moon, J.H. Richards, J. Biol. Chem. 248(20), 7276–7278 (1973)

    Google Scholar 

  18. A. Miri, A. Talmant, J.P. Renou, G. Monin, Meat Sci. 31, 165–173 (1992)

    Article  Google Scholar 

  19. A. Madden, M.O. Leach, J.C. Sharp, D.J. Collins, D. Easton, NMR Biomed. 4(1), 1–11 (1991)

    Article  Google Scholar 

  20. J.C. Puyana, B.R. Soller, S. Zhang, S.O. Heard, J. Trauma Issue 46(1), 9–15 (1999)

    Article  Google Scholar 

  21. B.R. Soller, R.H. Micheels, J. Coen, B. Parikh, L. Chu, C. Hsi, J. Clin. Monit. 12, 387–395 (1996)

    Article  Google Scholar 

  22. W. Schneider, G. Hildebrandt, H.-J. Sinell, Fleischwirtschaft 63, 1198–1205 (1983)

    Google Scholar 

  23. H. Schmidt, K. Sowoidnich, H.-D. Kronfeldt, Appl. Spectrosc. 64, 888–894 (2010)

    Article  ADS  Google Scholar 

  24. H. Schmidt, R. Scheier, D.L. Hopkins, Meat Sci. 93, 138–143 (2013)

    Article  Google Scholar 

  25. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627–1639 (1964)

    Article  ADS  Google Scholar 

  26. R. Chizzolini, E. Novelli, A. Badiani, P. Rosa, G. Delbono, Meat Sci. 34, 49–77 (1993)

    Article  Google Scholar 

  27. J.R. Bendall, Meat Sci. 3, 143–157 (1979)

    Article  Google Scholar 

  28. G. Cassanas, M. Morssli, E. Fabrègue, L. Bardet, J. Raman Spectrosc. 22, 409–413 (1991)

    Article  ADS  Google Scholar 

  29. J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens, J. Raman Spectrosc. 38, 1133–1147 (2007)

    Article  ADS  Google Scholar 

  30. D.K. Pedersen, S. Morel, H.J. Andersen, S.B. Engelsen, Meat Sci. 65, 581–592 (2003)

    Article  Google Scholar 

  31. M. Pezolet, M. Pigeon-Gosselin, J.-P. Caille, Biochim. Biophys. Acta 533, 263–269 (1978)

    Article  Google Scholar 

  32. M. Pézolet, M. Pigeon, D. Ménard, J.-P. Caillé, Biophys. J. 53, 319–325 (1988)

    Article  Google Scholar 

  33. R.C. Lord, G.J. Thomas Jr, Spectrochim. Acta A 23, 2551–2591 (1967)

    Article  ADS  Google Scholar 

  34. J.-M. Delabar, W. Guschlbauer, Biopolymers 18(8), 2073–2089 (1979)

    Article  Google Scholar 

  35. R. Escobar, P. Carmona, A. Rodríguez-Casado, M. Molina, Talanta 48, 773–780 (1999)

    Article  Google Scholar 

  36. A. Schäfer, K. Rosenvold, P.P. Purslow, H.J. Andersen, P. Henckel, Meat Sci. 61, 355–366 (2002)

    Article  Google Scholar 

  37. N. Battle, M.-C. Aristoy, F. Toldrá, J. Food Sci. 66(1), 68–71 (2001)

    Article  Google Scholar 

  38. J. Twardowski, I. Nowak, D.J. Stufkens, T.L. Snoeck, Biochim. Biophys. Acta 790(1), 70–77 (1984)

    Article  Google Scholar 

  39. T.W. Barrett, Spectrochim. Acta A 37(4), 233–239 (1981)

    Article  ADS  Google Scholar 

  40. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Boston, 1991)

    Google Scholar 

  41. H.C. Bertram, S. Dønstrup, A.H. Karlsson, H.J. Andersen, H. Stødkelde-Jørgensen, Magn. Reson. Imaging 19, 993–1000 (2001)

    Article  Google Scholar 

  42. R.N. Sayre, E.J. Briskey, J. Food Sci. 28(6), 675–679 (1963)

    Article  Google Scholar 

  43. C. Lopez-Bote, P.D. Warriss, S.N. Brown, Meat Sci. 26, 167–175 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German research foundation DFG (Deutsche Forschungsgemeinschaft) in the framework of the cluster project “Minimal Processing” of the Research Association of the German Food Industry (FEI). Financial support for the Research Centre of Food Quality by the European Regional Development Fund (ERDF) is gratefully acknowledged. The authors wish to thank Dr. Heinz-Detlef Kronfeldt for generous support with the prototype handheld Raman device, Dirk Grühn for the excellent cooperation and for providing the pork samples as well as Stefanie Hofmann and Thomas Kador for assistance with lactate and Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheier, R., Schmidt, H. Measurement of the pH value in pork meat early postmortem by Raman spectroscopy. Appl. Phys. B 111, 289–297 (2013). https://doi.org/10.1007/s00340-012-5332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5332-y

Keywords

Navigation