Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space

Abstract

We present a micro-integrated extended cavity diode laser module for experiments on rubidium Bose–Einstein condensates and atom interferometry at 780.24 nm onboard a sounding rocket. The micro-integration concept is optimized for space application. The laser chip, micro-lenses, a volume holographic Bragg grating, micro-temperature sensors and a micro-thermoelectric cooler are integrated on an aluminium nitride ceramic micro-optical bench with a foot print of only 50 × 10 mm2. Moveable parts are omitted to allow for a very compact and robust design. The laser module provides an output power of more than 120 mW at a short term (170 μs) linewidth of 54 kHz, both full-width-at-half-maximum. The laser can be coarsely tuned by 44 GHz with a continuous tuning range of 31 GHz. The micro-integration technology presented here can be transferred to other wavelengths.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    T. Rosenband et al. Science 319, 1808 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    A.D. Ludlow et al. Science 319, 1805 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    C.W. Chou et al. Science 329, 1630 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    L. Maleki, J. Prestage, Metrologia 42, 145 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    S.G. Turyshev et al. Int. J. Modern Phys. 16, 1879 (2007)

    ADS  Google Scholar 

  6. 6.

    P. Gill, Philos. T. R. Soc A 369, 4109 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    N. Yu et al. Appl. Phys. B 84, 647 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    M.A. Hohensee, H. Müller, J. Modern Opt. 58, 2021 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    V. Ménoret et al. Opt. Lett. 36, 21 (2011)

    Article  Google Scholar 

  10. 10.

    G. Stern et al. European Phys J. D 53, 353 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    F. Sorrentino et al. Microgravity Sci. Technol. 22, 551 (2010)

    Article  Google Scholar 

  12. 12.

    T. van Zoest et al. Science 328, 1540 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    R.A. Nyman et al. Rev. Scientific Instrum. 77, 0333105 (2006)

    Article  Google Scholar 

  14. 14.

    H.R. Telle, Spectrochimica Asta Rev 15, 301 (1993)

    Google Scholar 

  15. 15.

    Cunyun Ye, Tunable external cavity diode lasers (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004)

  16. 16.

    C.E. Wieman, L. Hollberg, Rev. Scientific Instrum. 62, 1 (1991)

    ADS  Article  Google Scholar 

  17. 17.

    C.J. Hawthorn, K.P. Weber, R.E. Scholten, Rev. Scientific Instrum. 72, 4477 (2001)

    ADS  Article  Google Scholar 

  18. 18.

    S. Stry, Appl. Phys. B 85, 365 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    M.G. Tarallo et al. Appl. Phys. B 103, 17 (2005)

    ADS  Article  Google Scholar 

  20. 20.

    X. Baillard et al. Opt. Commun. 266, 609 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    M. Gilowski et al. Opt. Commun. 280, 443 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    C. Salomon et al. C. R. Acad. Sci. IV-Phys. 2, 1313 (2001)

    Google Scholar 

  23. 23.

    K. Numata et al. Opt. Express 18, 22 (2010)

    Article  Google Scholar 

  24. 24.

    S. Spießberger et al. Appl. Phys. B 104, 4 (2011)

    Article  Google Scholar 

  25. 25.

    Z. Sodnik, B. Furch, H. Lutz, IEEE J. Sel. Top. Quantum Electron 1, 1051 (2010)

    Google Scholar 

  26. 26.

    J. Salz, IEEE Commun. Mag. 24, 6 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under Grant Number 50WM0940.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Luvsandamdin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luvsandamdin, E., Spießberger, S., Schiemangk, M. et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl. Phys. B 111, 255–260 (2013). https://doi.org/10.1007/s00340-012-5327-8

Download citation

Keywords

  • Injection Current
  • Free Spectral Range
  • Optical Clock
  • Atom Interferometer
  • Beat Note