Skip to main content
Log in

Highly stable piezoelectrically tunable optical cavities

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than \(1\times 10^{-14}, \) which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (>1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    ADS  Google Scholar 

  2. J.L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, J. Ye, IEEE Trans. Instrum. Meas. 48, 583 (1999)

    Article  Google Scholar 

  3. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, P. Bouyer, Opt. Lett. 37, 1005 (2012)

    Article  ADS  Google Scholar 

  4. J. Ye, J.L. Hall, Opt. Lett. 24, 1838 (1999)

    Article  ADS  Google Scholar 

  5. F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, Opt. Lett. 34, 914 (2009)

    Article  ADS  Google Scholar 

  6. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, G. Santarelli, Opt. Express 18, 3284 (2010)

    Article  ADS  Google Scholar 

  7. B. Sheard, G. Heinzel, K. Danzmann, Class. Quantum Grav. 27, 084011 (2010)

    Article  ADS  Google Scholar 

  8. J.I. Thorpe, K. Numata, J. Livas, Opt. Express 16, 15980 (2008)

    Article  ADS  Google Scholar 

  9. LISA assessment study report, ESA/SRE, 3 (2011)

  10. K. Danzmann, A. Rüdiger, Class. Quantum Grav. 20, 1 (2003)

    Article  ADS  Google Scholar 

  11. L.-S. Ma, J. Ye, P. Dubé, J.L. Hall, J Opt. Soc. Am. B 16, 2255 (1999)

    Article  ADS  Google Scholar 

  12. A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Appl. Phys. B 92, 313 (2008)

    Article  ADS  Google Scholar 

  13. B. Burghardt, W. Jitschin, G. Meisel, Appl. Phys. 20, 141 (1979)

    Article  ADS  Google Scholar 

  14. P. Bohlouli-Zanjani, K. Afrousheh, J.D.D. Martin, Rev. Sci. Instrum. 77, 093105 (2006)

    Article  ADS  Google Scholar 

  15. F. Rohde, M. Almendros, C. Schuck, J. Huwer, M. Hennrich, J. Eschner, J. Phys. B 43, 115401 (2010)

    Article  ADS  Google Scholar 

  16. Y. Li, T. Ido, T. Eichler, H. Katori, Appl. Phys. B 78, 315 (2004)

    Article  ADS  Google Scholar 

  17. Y.Y. Jiang, A.D. Ludlow, N.D. Lemke, R.W. Fox, J.A. Sherman, L.-S. Ma, C.W. Oates, Nat. Photonics 5, 158 (2011)

    Google Scholar 

  18. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687 (2012)

    Google Scholar 

  19. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)

    Article  ADS  Google Scholar 

  20. K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  21. J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, E.M.L. English, P. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79, 1 (2009)

    Article  Google Scholar 

  22. S.A. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)

    Article  ADS  Google Scholar 

  23. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007)

    Article  ADS  Google Scholar 

  24. B.G. Lindsay, K.A. Smith, F.B. Dunning, Rev. Sci. Instrum. 62, 1656 (1991)

    Article  ADS  Google Scholar 

  25. L. Conti, M. De Rosa, F. Marin, J. Opt. Soc. Am. B 20, 462 (2003)

    Article  ADS  Google Scholar 

  26. K. Döringshoff, K. Möhle, M. Nagel, E.V. Kovalchuk, A. Peters, Proceedings of the 24th EFTF, 2010

  27. S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk, A. Peters, Phys. Rev. D 80, 105011 (2009)

    Google Scholar 

  28. R. Fleddermann, M. Tröbs, F. Steier, G. Heinzel, K. Danzmann, IEEE Trans. Instrum. Meas. 58, 2002 (2009)

    Article  Google Scholar 

  29. Z.W. Barber, W.R. Babbitt, B. Kaylor, R.R. Reibel, P.A. Roos, Appl. Opt. 49, 213 (2010)

    Article  ADS  Google Scholar 

  30. M. Goldfarb, N. Celanovic, IEEE Control Syst. Mag. 17, 69 (1997)

    Google Scholar 

  31. H. Janocha, K. Kuhnen, Sens. Actuators A 79, 83 (2000)

    Google Scholar 

  32. D.-H. Gwo, Ultra-precision and reliable bonding method United States Patent no. US 6 284 085 B1, 2001

  33. D.-H. Gwo, Hydroxide-catalyzed bonding United States Patent no. US 6 548 176 B1, 2003

  34. P. Hartmann, K. Nattermann, T. Döhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, S. Lucarelli, Proc. SPIE 7425, 74250M (2009)

  35. J. Ye, L.-S. Ma, J.L. Hall, J. Opt. Soc. Am. B 17, 927 (2000)

    Article  ADS  Google Scholar 

  36. A. Czajkowski, A.A. Madej, P. Dubé, Opt. Commun. 234, 259 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the AEI Hannover and especially Johanna Bogenstahl for providing the expertise and facilities for the hydroxide-bonding procedure. This work is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under Grant number DLR 50 OQ 0601. E.V. Kovalchuk is also associated with the Frequency Standards Laboratory, P. N. Lebedev Physical Institute, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Möhle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möhle, K., Kovalchuk, E.V., Döringshoff, K. et al. Highly stable piezoelectrically tunable optical cavities. Appl. Phys. B 111, 223–231 (2013). https://doi.org/10.1007/s00340-012-5322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5322-0

Keywords

Navigation