Opto-mechanical estimation of micro-trap with cold atoms via nonlinear stimulated Raman scattering spectrum

Abstract

High-gain resonant nonlinear Raman spectrum on trapped cold atoms within a high-finesse optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap is presented. The enhancement of this scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms with nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman spectrum is conducted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    S.A. Meek, H. Conrad, G. Meijer, Science 324, 1699 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nature Physics 2, 36 (2006)

    Article  Google Scholar 

  5. 5.

    S. Fan, Nat. Photonics 4, 76 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, T.J. Kippenberg, Nat. Photonics 2, 627 (2008)

    Article  Google Scholar 

  7. 7.

    M.F. Riedel, P. Böhi, Y. Li, T.W. Hänsch, A. Sinatra, P. Treutlein, Nature 464, 1170 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    G. Birkl, J. Fortágh, Laser Photon. Rev. 1, 12 (2007)

    Article  Google Scholar 

  9. 9.

    M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, P. Zoller, Phys. Scr. T 137, 014001 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede, Appl. Phys. B 65, 419 (1997)

    ADS  Article  Google Scholar 

  12. 12.

    P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    M. Bonn, A.W. Kleyn, G.J. Kroes, Surf. Sci. 500, 475 (2002)

    ADS  Article  Google Scholar 

  14. 14.

    A.J. deMello, Nature 442, 394 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    J. Reichel, V. Vuletić, Atom Chips (Wiley, Weinheim, 2011)

  17. 17.

    S. Erikkson, Eur. Phys. J. D35, 135 (2005)

    ADS  Google Scholar 

  18. 18.

    M. Hammes, D. Rychtarik, H.-C. Nägerl, R. Grimm, Phys. Rev. A 66, 051401(R) (2002)

    ADS  Article  Google Scholar 

  19. 19.

    T. Walker, D. Sesko, C. Wieman, Phys. Rev. Lett. 64, 408 (1990)

    ADS  Article  Google Scholar 

  20. 20.

    K. Kim, K.H. Lee, M. Heo, H.R. Noh, W. Jhe, Phys. Rev. A 71, 053406 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    G. Moon, M.S. Heo, Y. Kim, H.R. Noh, W. Jhe, Phys. Rev. A 81, 033425 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    D. Hoffmann, S. Bali, T. Walker, Phys. Rev. A 54, R1030 (1996)

    ADS  Article  Google Scholar 

  23. 23.

    C.D. Wallace, T.P. Dinneen, K.Y.N. Tan, A. Kumarakrishnan, P.L. Gould, J. Javanainen, J. Opt. Soc. Am. B 11, 703 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    D. Grison, B. Lounis, C. Salomon, J.Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991)

    ADS  Article  Google Scholar 

  25. 25.

    T.M. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik, Phys. Rev. A 71, 013401 (2005)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Yoshikawa, Y. Torii, T. Kuga, Phys. Rev. Lett. 94, 083602 (2005)

    ADS  Article  Google Scholar 

  27. 27.

    K. Razdan, D.A. Van Baak, Am. J. Phys. 67, 832 (1999)

    ADS  Article  Google Scholar 

  28. 28.

    D. Kruse, Ch. von Cube, C. Zimmermann, Ph. W. Courteille, Phys. Rev. Lett. 91, 183601 (2003)

    Google Scholar 

  29. 29.

    D. Kruse, M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann, Ph.W. Courteille, T. Elsässer, B. Nagorny, A. Hemmerich, Phys. Rev. A 67, 051802(R) (2003)

  30. 30.

    C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, R. Bonifacio, Phys. Rev. Lett. 93, 083601 (2004)

    Google Scholar 

  31. 31.

    M.H. Schleier-Smith, I.D. Leroux, H. Zhang, M.A. Van Camp, V. Vuletic, Phys. Rev. Lett. 107, 143005 (2011)

    ADS  Article  Google Scholar 

  32. 32.

    H. Weimer, H.P. Büchler, New J. Phys. 13, 113018 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    J.M. Pino, R.J. Wild, P. Makotyn, D.S. Jin, E.A. Cornell, Phys. Rev. A 83, 033615 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    I.B. Mekhov, H. Ritsch, J. Phys. B: At. Mol. Opt. Phys. 45, 102001 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    B. Nagorny, Th. Elsässer, A. Hemmerich, Phys. Rev. Lett. 91, 153003 (2003)

    ADS  Article  Google Scholar 

  36. 36.

    P. Quinto-Su, M. Tscherneck, M. Holmes, N. Bigelow, Opt. Express 12, 5098 (2004)

    ADS  Article  Google Scholar 

  37. 37.

    M. Himsworth, T. Freegarde, Phys. Rev. A 81, 023423 (2010)

    ADS  Article  Google Scholar 

  38. 38.

    J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, H.J. Kimble, Nature 425, 268 (2003)

    ADS  Article  Google Scholar 

  39. 39.

    S. Ezekiel, Sov. J. Quantum Electron. 8, 942 (1978)

    ADS  Article  Google Scholar 

  40. 40.

    R. Bonifacio, L. De Salvo, L.M. Narducci, E.J. D’Angelo, Phys. Rev. A 50, 1716 (1994)

    ADS  Article  Google Scholar 

  41. 41.

    G.J. Yang, L. Zhang, W. Shu, Phys. Rev. A 68, 063802 (2003)

    ADS  Article  Google Scholar 

  42. 42.

    W. Vogel, R.L. de Matos Filho, Phys. Rev. A 52, 4214 (1995)

  43. 43.

    P. Domokos, H. Ritsch, J. Opt. Soc. Am. B 20, 1098 (2003)

    ADS  Article  Google Scholar 

  44. 44.

    Dan M. Stamper-Kurn, arxiv:quant-ph/1204.4351v1 (2012)

  45. 45.

    C.A. Holmes, G.J. Milburn, Fortschr. Phys. 57, 1052 (2009)

    MATH  Article  Google Scholar 

  46. 46.

    L. Zhang, G.Y. Yang, L.X. Xia, J. Opt. B: Quantum Semiclass. Opt. 7, 355 (2005)

    ADS  Article  Google Scholar 

  47. 47.

    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    For the cold atoms in the simulation, the initial positions of the N atoms are supposed to be uniformly located in the trap, which are controlled by the atomic density. The momenta of the N atoms are randomly distributed with a Gaussian distribution of zero mean value. The standard deviation σ of the Gaussian distribution is set below the collective recoil velocity \(\hbar k \rho\) to control the atomic temperature according to \( T \approx 2\hbar \omega_r \sigma^2/k_B,\) where \(\hbar \omega_r\) is the recoil energy and k B is the Boltzmann’s constant

  49. 49.

    V.S. Letokhov, B.D. Pavlik, Appl. Phys. 9, 229 (1976)

    ADS  Article  Google Scholar 

  50. 50.

    S. Slama, S. Bux, G. Krenz, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    J. Ringot, P. Szriftgiser, J.C. Garreau, Phys. Rev. A 65, 013403 (2001)

    ADS  Article  Google Scholar 

  52. 52.

    P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, Appl. Phys. Lett. 94, 121106 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    D. Polli, D. Brida, S. Mukamel, G. Lanzani, G. Cerullo, Phys. Rev. A 82, 053809 (2010)

    ADS  Article  Google Scholar 

  54. 54.

    M. Vanner, I. Pikovski, G.D. Cole, M.S. Kim, C. Brukner, K. Hammerer, G.J. Milburn, M. Aspelmeyer, Proc. Natl. Acad. Sci. USA 108, 16182 (2011)

    ADS  Article  Google Scholar 

  55. 55.

    D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631 (2004)

    ADS  Article  Google Scholar 

  56. 56.

    T. Zigdon, A.D. Wilson-Gordon, H. Friedmann, Phys. Rev. A 77, 033836 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Aravind Chiruvelli for valuable discussions and good suggestions. This work is supported by the Shaanxi Natural Science Foundation SJ08A12 of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L. Opto-mechanical estimation of micro-trap with cold atoms via nonlinear stimulated Raman scattering spectrum. Appl. Phys. B 111, 195–202 (2013). https://doi.org/10.1007/s00340-012-5319-8

Download citation

Keywords

  • Cavity Mode
  • Stimulate Raman Scattering
  • Cold Atom
  • Atomic Vibration
  • Pump Mode