Applied Physics B

, Volume 111, Issue 2, pp 195–202 | Cite as

Opto-mechanical estimation of micro-trap with cold atoms via nonlinear stimulated Raman scattering spectrum

Article

Abstract

High-gain resonant nonlinear Raman spectrum on trapped cold atoms within a high-finesse optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap is presented. The enhancement of this scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms with nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman spectrum is conducted.

References

  1. 1.
    R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Meek, H. Conrad, G. Meijer, Science 324, 1699 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nature Physics 2, 36 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Fan, Nat. Photonics 4, 76 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, T.J. Kippenberg, Nat. Photonics 2, 627 (2008)CrossRefGoogle Scholar
  7. 7.
    M.F. Riedel, P. Böhi, Y. Li, T.W. Hänsch, A. Sinatra, P. Treutlein, Nature 464, 1170 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    G. Birkl, J. Fortágh, Laser Photon. Rev. 1, 12 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, P. Zoller, Phys. Scr. T 137, 014001 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede, Appl. Phys. B 65, 419 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Bonn, A.W. Kleyn, G.J. Kroes, Surf. Sci. 500, 475 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A.J. deMello, Nature 442, 394 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J. Reichel, V. Vuletić, Atom Chips (Wiley, Weinheim, 2011)Google Scholar
  17. 17.
    S. Erikkson, Eur. Phys. J. D35, 135 (2005)ADSGoogle Scholar
  18. 18.
    M. Hammes, D. Rychtarik, H.-C. Nägerl, R. Grimm, Phys. Rev. A 66, 051401(R) (2002)ADSCrossRefGoogle Scholar
  19. 19.
    T. Walker, D. Sesko, C. Wieman, Phys. Rev. Lett. 64, 408 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    K. Kim, K.H. Lee, M. Heo, H.R. Noh, W. Jhe, Phys. Rev. A 71, 053406 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    G. Moon, M.S. Heo, Y. Kim, H.R. Noh, W. Jhe, Phys. Rev. A 81, 033425 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D. Hoffmann, S. Bali, T. Walker, Phys. Rev. A 54, R1030 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    C.D. Wallace, T.P. Dinneen, K.Y.N. Tan, A. Kumarakrishnan, P.L. Gould, J. Javanainen, J. Opt. Soc. Am. B 11, 703 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    D. Grison, B. Lounis, C. Salomon, J.Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    T.M. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik, Phys. Rev. A 71, 013401 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Yoshikawa, Y. Torii, T. Kuga, Phys. Rev. Lett. 94, 083602 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    K. Razdan, D.A. Van Baak, Am. J. Phys. 67, 832 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    D. Kruse, Ch. von Cube, C. Zimmermann, Ph. W. Courteille, Phys. Rev. Lett. 91, 183601 (2003)Google Scholar
  29. 29.
    D. Kruse, M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann, Ph.W. Courteille, T. Elsässer, B. Nagorny, A. Hemmerich, Phys. Rev. A 67, 051802(R) (2003)Google Scholar
  30. 30.
    C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph.W. Courteille, G.R.M. Robb, N. Piovella, R. Bonifacio, Phys. Rev. Lett. 93, 083601 (2004)Google Scholar
  31. 31.
    M.H. Schleier-Smith, I.D. Leroux, H. Zhang, M.A. Van Camp, V. Vuletic, Phys. Rev. Lett. 107, 143005 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    H. Weimer, H.P. Büchler, New J. Phys. 13, 113018 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Pino, R.J. Wild, P. Makotyn, D.S. Jin, E.A. Cornell, Phys. Rev. A 83, 033615 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    I.B. Mekhov, H. Ritsch, J. Phys. B: At. Mol. Opt. Phys. 45, 102001 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    B. Nagorny, Th. Elsässer, A. Hemmerich, Phys. Rev. Lett. 91, 153003 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    P. Quinto-Su, M. Tscherneck, M. Holmes, N. Bigelow, Opt. Express 12, 5098 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    M. Himsworth, T. Freegarde, Phys. Rev. A 81, 023423 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    J. McKeever, A. Boca, A.D. Boozer, J.R. Buck, H.J. Kimble, Nature 425, 268 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    S. Ezekiel, Sov. J. Quantum Electron. 8, 942 (1978)ADSCrossRefGoogle Scholar
  40. 40.
    R. Bonifacio, L. De Salvo, L.M. Narducci, E.J. D’Angelo, Phys. Rev. A 50, 1716 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    G.J. Yang, L. Zhang, W. Shu, Phys. Rev. A 68, 063802 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    W. Vogel, R.L. de Matos Filho, Phys. Rev. A 52, 4214 (1995)Google Scholar
  43. 43.
    P. Domokos, H. Ritsch, J. Opt. Soc. Am. B 20, 1098 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Dan M. Stamper-Kurn, arxiv:quant-ph/1204.4351v1 (2012)Google Scholar
  45. 45.
    C.A. Holmes, G.J. Milburn, Fortschr. Phys. 57, 1052 (2009)MATHCrossRefGoogle Scholar
  46. 46.
    L. Zhang, G.Y. Yang, L.X. Xia, J. Opt. B: Quantum Semiclass. Opt. 7, 355 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    For the cold atoms in the simulation, the initial positions of the N atoms are supposed to be uniformly located in the trap, which are controlled by the atomic density. The momenta of the N atoms are randomly distributed with a Gaussian distribution of zero mean value. The standard deviation σ of the Gaussian distribution is set below the collective recoil velocity \(\hbar k \rho\) to control the atomic temperature according to \( T \approx 2\hbar \omega_r \sigma^2/k_B,\) where \(\hbar \omega_r\) is the recoil energy and k B is the Boltzmann’s constantGoogle Scholar
  49. 49.
    V.S. Letokhov, B.D. Pavlik, Appl. Phys. 9, 229 (1976)ADSCrossRefGoogle Scholar
  50. 50.
    S. Slama, S. Bux, G. Krenz, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    J. Ringot, P. Szriftgiser, J.C. Garreau, Phys. Rev. A 65, 013403 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Lončar, Appl. Phys. Lett. 94, 121106 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    D. Polli, D. Brida, S. Mukamel, G. Lanzani, G. Cerullo, Phys. Rev. A 82, 053809 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    M. Vanner, I. Pikovski, G.D. Cole, M.S. Kim, C. Brukner, K. Hammerer, G.J. Milburn, M. Aspelmeyer, Proc. Natl. Acad. Sci. USA 108, 16182 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    T. Zigdon, A.D. Wilson-Gordon, H. Friedmann, Phys. Rev. A 77, 033836 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations