Skip to main content
Log in

High-energy femtosecond laser pulse compression in single- and multi-ionization regime of rare gases: experiment versus theory

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report experimental and numerical results on the post-compression of 40 fs duration pulses down to 10 fs at high energy level (multi-mJ). The spectral broadening is achieved through the self-phase modulation resulting from optical-field-ionization of different noble gases (He, Ne, Ar) by the 40-fs laser pulse propagating in a low-pressure gas-filled hollow capillary. We discuss the influence of the multi-ionization dynamics, through the gas dependence, on the laser energy carried by the capillary, as well as on the duration and temporal shape of the post-compressed pulses. In all the different experimental conditions investigated in this article (pressures and gases used), the experimental data is in good agreement with the numerical results from a three-dimension propagation code. Through this study, we demonstrate the robustness of the proposed post-compression technique with regard to multi-ionization, indicating that it can be used on a large intensity range by judiciously choosing the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  2. M. Nisoli, S. Sansone, Prog. Quantum Electron. 33, 17 (2009)

    Article  ADS  Google Scholar 

  3. P. Corkum, N. Burnett, M. Ivanov, Opt. Lett. 19, 1870 (1994)

    Article  ADS  Google Scholar 

  4. I. Christov, M. Murnane, H. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997)

    Article  ADS  Google Scholar 

  5. G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)

    Article  ADS  Google Scholar 

  6. V.V. Strelkov, E. Mével, E. Constant, New J. Phys. 10, 083040 (2008)

    Article  ADS  Google Scholar 

  7. E. Goulielmakis, V.S. Yakovlev, A.L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  8. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, M. Nisoli, Nat. Photonics 4, 875 (2010)

    Article  ADS  Google Scholar 

  9. P. Heissler, R. Hörlein, J.M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C.M.S. Sears, F. Krausz, L. Veisz, M. Zepf, G.D. Tsakiris, Phys. Rev. Lett. 108, 235003 (2012)

    Article  ADS  Google Scholar 

  10. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  11. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  12. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 427, 817 (2004)

    Article  ADS  Google Scholar 

  13. E. Goulielmakis, V.S. Yakovlev, A.L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, Science 317, 769 (2007)

    Article  ADS  Google Scholar 

  14. C. Hauri, W. Kornelis, F. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Appl. Phys. B 79, 673 (2004)

    Article  ADS  Google Scholar 

  15. M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)

    Article  ADS  Google Scholar 

  16. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz, Appl. Phys. B 65, 189 (1997)

    Article  ADS  Google Scholar 

  17. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, K. Midorikawa, Opt. Lett. 35, 1887 (2010)

    Article  ADS  Google Scholar 

  18. X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens, Laser Phys. 21, 198 (2011)

    Article  ADS  Google Scholar 

  19. G. Tempea, T. Brabec, Opt. Lett. 23, 762 (1998)

    Article  ADS  Google Scholar 

  20. A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, A. Mysyrowicz, J. Opt. Soc. Am. B 19, 1117 (2002)

    Article  ADS  Google Scholar 

  21. N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, Opt. Lett. 30, 567 (2005)

    Article  ADS  Google Scholar 

  22. F. Tavella, A. Marcinkevicius, F. Krausz, Opt. Express 14, 12822 (2006)

    Article  ADS  Google Scholar 

  23. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, F. Krausz, Opt. Lett. 34, 2459 (2009)

    Article  ADS  Google Scholar 

  24. C. Fourcade Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, D. Descamps, Opt. Lett. 35, 253 (2010)

    Article  ADS  Google Scholar 

  25. T. Auguste, O. Gobert, C. Fourcade Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, D. Descamps, J. Opt. Soc. Am. B. 29, 1277 (2012)

    Article  Google Scholar 

  26. E. Yablonovitch, Phys. Rev. Lett. 60, 795 (1988)

    Article  ADS  Google Scholar 

  27. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924 (1966)

    ADS  Google Scholar 

  28. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 24, 207 (1967)

    ADS  Google Scholar 

  29. A. Perelomov, V. Popov, Sov. Phys. JETP 25, 336 (1967)

    ADS  Google Scholar 

  30. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  31. T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, C. Manus, Opt. Commun. 89, 145 (1992)

    Article  ADS  Google Scholar 

  32. E.A. Marcatili, R.A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964)

    Google Scholar 

  33. R. Trebino, K. Delong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, D. Kane, Rev. Sci. Instrum. 68, 3277 (1997)

    Article  ADS  Google Scholar 

  34. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  35. M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka, J. Opt. Soc. Am. B 20, 2002 (2003)

    Article  ADS  Google Scholar 

  36. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran (Cambridge University, Cambridge, 1992), pp. 701–740

    MATH  Google Scholar 

  37. O.B. Danilov, M.I. Zintchenko, YuA Rubinov, E.N. Sosnov, J. Opt. Soc. Am. B 7, 1785 (1990)

    Article  ADS  Google Scholar 

  38. S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989)

    Article  ADS  Google Scholar 

  39. C. Courtois, B. Cros, G. Malka, G. Matthieussent, J.R. Marquès, N. Blanchot, J.L. Miquel, J. Opt. Soc. Am. B 17, 864 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank C. Medina, R. Bouillaud, and L. Merzeau for their technical assistance. This work is supported by the Conseil Regional d’Aquitaine (COLA2 2.1.3 09010502), the European Union (EU) (LaserLabII ALADIN) and the Agence Nationale de la Recherche (ANR-09- BLAN-0031-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Auguste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auguste, T., Fourcade Dutin, C., Dubrouil, A. et al. High-energy femtosecond laser pulse compression in single- and multi-ionization regime of rare gases: experiment versus theory. Appl. Phys. B 111, 75–87 (2013). https://doi.org/10.1007/s00340-012-5309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5309-x

Keywords

Navigation