Skip to main content
Log in

A novel concept for in situ gas-phase laser Raman spectroscopy for solid oxide fuel cell research

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A planar solid oxide fuel cell (SOFC) operated with hydrogen at T = 1,123 K was equipped with an optically transparent anode flow field to apply species concentration measurements by 1D laser Raman scattering. The flow channels had a cross section of 3 mm × 4 mm and a length of 40 mm. The beam from a pulsed high-power frequency-doubled Nd:YAG laser (λ = 532 nm) was directed through one channel and the Raman-scattered light from different molecular species was imaged onto an intensified CCD camera. The main goal of the study was an assessment of the potential of this experimental configuration for a quantitative determination of local gas concentrations. The paper describes the configuration of the optically accessible SOFC, the laser system and optical setup for 1D Raman spectroscopy as well as the challenges associated with the measurements. Important aspects like laser pulse shaping, signal background and signal quality are addressed. Examples of measured species concentration profiles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Metzger, K.A. Friedrich, H. Müller-Steinhagen, G. Schiller, Solid State Ion. 177, 2045–2051 (2006)

    Article  Google Scholar 

  2. P. Metzger, Ortsaufgelöste Charakterisierung von Festelektrolyt-Brennstoffzellen (SOFC) durch Messung betriebsrelevanter Größen entlang des Strömungswegs. PhD thesis, University of Stuttgart, 2010

  3. G. Schiller, W. Bessler, K.A. Friedrich, S. Gewies, C. Willich, ECS Trans. 17(1), 79–87 (2009)

    Article  Google Scholar 

  4. P. Metzger, K.A. Friedrich, G. Schiller, C. Willich, J. Fuel Cell Sci. Technol. 6(2), 021304-1–021304-4 (2009)

    Google Scholar 

  5. W.G. Bessler, S. Gewies, C. Willich, G. Schiller, K.A. Friedrich, Fuel Cells 10(3), 411–418 (2010)

    Article  Google Scholar 

  6. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, The Netherlands, 1996)

    Google Scholar 

  7. J.E.A. Saunders, M.H. Davy, Int. J. Hydrogen Energy 37, 3403–3414 (2012)

    Article  Google Scholar 

  8. R.C. Maher, L.F. Cohen, P. Lohsoontorn, D.J.L. Brett, N.P. Brandon, J. Phys. Chem. A 112, 1497–1501 (2008)

    Article  Google Scholar 

  9. M.P. Pomfret, J.C. Owrutsky, R.A. Walker, J. Phys. Chem. B 110(35), 17305–17308 (2006)

    Article  Google Scholar 

  10. M.P. Pomfret, J.C. Owrutsky, R.A. Walker, Anal. Chem. 79(6), 2367–2372 (2007)

    Article  Google Scholar 

  11. Z. Cheng, M. Liu, Solid State Ion. 178(13–14), 925–935 (2007)

    Article  Google Scholar 

  12. A.J. McGettrick, W. Johnstone, R. Cunningham, J.D. Black, J. Lightwave Technol. 27(15), 3150–3161 (2009)

    Article  ADS  Google Scholar 

  13. B.C. Eigenbrodt, J.D. Kirtley, R.A. Walker, ECS Trans. 35(1), 2789–2798 (2011)

    Article  Google Scholar 

  14. E. Brightman, R. Maher, D.G. Ivey, G. Offer, N. Brandon, ECS Trans. 35(1), 1407–1419 (2011)

    Article  Google Scholar 

  15. M.J. Pelletier, Analytical Applications of Raman Spectroscopy (Wiley VCH, Weinheim, 1995)

    Google Scholar 

  16. W. Meier, R.S. Barlow, Y.-L. Chen, J.-Y. Chen, Combust. Flame 123, 326–343 (2000)

    Article  Google Scholar 

  17. W. Stricker in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J. Jeffries (Taylor and Francis, New York, 2002), pp. 155–193

  18. R.S. Barlow, Proc. Combust. Inst. 31, 49–75 (2007)

    Article  Google Scholar 

  19. R.S. Barlow, C.D. Carter, R.W. Pitz, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J. Jeffries (Taylor & Francis, New York, 2002), pp. 384–407

  20. H. Ax, P. Kutne, W. Meier, K. König, U. Maas, A. Class, M. Aigner, Appl. Phys. B 94, 705–714 (2009)

    Article  ADS  Google Scholar 

  21. U. Stopper, M. Aigner, H. Ax, W. Meier, R. Sadanandan, M. Stöhr, A. Bonaldo, Exp. Therm. Fluid Sci. 34, 396–403 (2010)

    Article  Google Scholar 

  22. R.W. Dibble, S.H. Starner, A.R. Masri, R.S. Barlow, Appl. Phys. B 51, 39–43 (1990)

    Article  ADS  Google Scholar 

  23. W.G. Bessler, S. Gewies, M. Vogler, Electrochim. Acta 53, 1782–1800 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Initiative and Networking Fund of the Helmholtz Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, G., Auer, C., Bessler, W.G. et al. A novel concept for in situ gas-phase laser Raman spectroscopy for solid oxide fuel cell research. Appl. Phys. B 111, 29–38 (2013). https://doi.org/10.1007/s00340-012-5303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5303-3

Keywords

Navigation