Skip to main content
Log in

Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Although recent advances in fabrication technologies have allowed the realization of highly accurate nanometric devices and systems, most approaches still lack uniformity and mass-production capability sufficient for practical use. We have previously demonstrated a novel technique for autonomously coupling heterogeneous quantum dots to induce particular optical responses based on a simple phonon-assisted photocuring method in which a mixture of quantum dots and photocurable polymer is irradiated with light. The cured polymer sequentially encapsulates coupled quantum dots, forming what we call a nanophotonic droplet. Recently, we found that each quantum dot in the mixture is preferably coupled with other quantum dots of similar size due to a size resonance effect of the optical near-field interactions between them. Moreover, every nanophotonic droplet is likely to contain the same number of coupled quantum dots. In this paper, we describe the basic mechanisms of autonomously fabricating nanophotonic droplets, and we examine the size- and number-selectivity of the quantum dots during their coupling process. The results from experiments show the uniformity of the optical properties of mass-produced nanophotonic droplets, revealed by emission from the contained coupled quantum dots, due to the fundamental characteristics of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.T. Bohr, IEEE Trans. Nanotechnol. 1, 56–62 (2002)

    Article  ADS  Google Scholar 

  2. J. Melngailis, A.A. Mondelli, I.L. Berry III, R. Mohondro, J. Vacuum Sci. Technol. B (Microelectron. Nanometer Struct.) 16, 927–957 (1998)

  3. C.A. Mirkin, S.H. Hong, L. Demers, Chem. Phys. Chem. 2, 37–39 (2001)

    Article  Google Scholar 

  4. J.G. Chase, B.W. Smith, J. Intell. Mater. Syst. Struct 12, 807–817 (2001)

    Article  Google Scholar 

  5. M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404–1417 (2008)

    Article  Google Scholar 

  6. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957–2959 (2003)

    Article  ADS  Google Scholar 

  7. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B Lasers Opt. 84, 243–246 (2006)

    Article  ADS  Google Scholar 

  8. W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. B Lasers Opt. 84, 257–259 (2006)

    Article  ADS  Google Scholar 

  9. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Express 17, 11113–11121 (2009)

    Article  ADS  Google Scholar 

  10. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495–496 (2002)

    Article  ADS  Google Scholar 

  11. B.A. Parviz, D. Ryan, G.M. Whitesides, IEEE Trans. Adv. Packag. 26, 233–241 (2003)

    Article  Google Scholar 

  12. Y.I. Mazur, Z.M. Wang, G.G. Tarasov, M. Xiao, G.J. Salamo, J.W. Tomm, V. Talalaev, H. Kissel, Appl. Phys. Lett. 86, 063102 (2005)

    Article  ADS  Google Scholar 

  13. M.P. Stoykovich, M. Müller, S. Ouk Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, P.F. Nealey, Science 308, 1442–1446 (2005)

    Article  ADS  Google Scholar 

  14. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B Lasers Opt. doi:10.1007/s00340-012-5249-5 (online first 2012)

  15. Y. Zhou, Z.L. Wang, Z.R. Ma, Y. Ebina, K. Takada, T. Sasaki, Curr. Nanosci. 3, 155–160 (2007)

    Article  ADS  Google Scholar 

  16. N. Murase, M. Ando, AIST Today 10, 10 (2010)

    Google Scholar 

  17. H. Ren, S. Xu, D. Ren, S.-T. Wu, Opt. Exp. 19, 1985–1990 (2011)

    Article  ADS  Google Scholar 

  18. S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B Lasers Opt. 99, 415–422 (2010)

    Article  ADS  Google Scholar 

  19. H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98, 283–289 (2010)

    Article  ADS  Google Scholar 

  20. T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747–754 (2011)

    Article  ADS  Google Scholar 

  21. K. Kitamura, T. Kawazoe, M. Ohtsu, Appl. Phys. B 107, 293–299 (2012)

    Article  ADS  Google Scholar 

  22. T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122(024715), 1–5 (2005)

    Google Scholar 

  23. M. Ohtsu Eds., Progress in Nano-Electro-Optics II (Springer, Berlin, 2004)

  24. S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279–285 (2001)

    Article  MathSciNet  Google Scholar 

  25. Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22(215605), 1–5 (2011)

    Google Scholar 

Download references

Acknowledgments

A part of this work was supported by the Research and Development Program for Innovative Energy Efficiency Technology funded by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Tate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tate, N., Liu, Y., Kawazoe, T. et al. Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots. Appl. Phys. B 110, 293–297 (2013). https://doi.org/10.1007/s00340-012-5285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5285-1

Keywords

Navigation