Applied Physics B

, Volume 110, Issue 3, pp 293–297 | Cite as

Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots

  • Naoya Tate
  • Yang Liu
  • Tadashi Kawazoe
  • Makoto Naruse
  • Takashi Yatsui
  • Motoichi Ohtsu
Rapid Communication

Abstract

Although recent advances in fabrication technologies have allowed the realization of highly accurate nanometric devices and systems, most approaches still lack uniformity and mass-production capability sufficient for practical use. We have previously demonstrated a novel technique for autonomously coupling heterogeneous quantum dots to induce particular optical responses based on a simple phonon-assisted photocuring method in which a mixture of quantum dots and photocurable polymer is irradiated with light. The cured polymer sequentially encapsulates coupled quantum dots, forming what we call a nanophotonic droplet. Recently, we found that each quantum dot in the mixture is preferably coupled with other quantum dots of similar size due to a size resonance effect of the optical near-field interactions between them. Moreover, every nanophotonic droplet is likely to contain the same number of coupled quantum dots. In this paper, we describe the basic mechanisms of autonomously fabricating nanophotonic droplets, and we examine the size- and number-selectivity of the quantum dots during their coupling process. The results from experiments show the uniformity of the optical properties of mass-produced nanophotonic droplets, revealed by emission from the contained coupled quantum dots, due to the fundamental characteristics of our method.

Keywords

Nanometric Structure Photocurable Polymer Yukawa Function Inhomogeneous Emission Nanometric Space 

Notes

Acknowledgments

A part of this work was supported by the Research and Development Program for Innovative Energy Efficiency Technology funded by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

References

  1. 1.
    M.T. Bohr, IEEE Trans. Nanotechnol. 1, 56–62 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J. Melngailis, A.A. Mondelli, I.L. Berry III, R. Mohondro, J. Vacuum Sci. Technol. B (Microelectron. Nanometer Struct.) 16, 927–957 (1998)Google Scholar
  3. 3.
    C.A. Mirkin, S.H. Hong, L. Demers, Chem. Phys. Chem. 2, 37–39 (2001)CrossRefGoogle Scholar
  4. 4.
    J.G. Chase, B.W. Smith, J. Intell. Mater. Syst. Struct 12, 807–817 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Ohtsu, T. Kawazoe, T. Yatsui, M. Naruse, IEEE J. Sel. Top. Quantum Electron. 14, 1404–1417 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957–2959 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B Lasers Opt. 84, 243–246 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. B Lasers Opt. 84, 257–259 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, Opt. Express 17, 11113–11121 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495–496 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Parviz, D. Ryan, G.M. Whitesides, IEEE Trans. Adv. Packag. 26, 233–241 (2003)CrossRefGoogle Scholar
  12. 12.
    Y.I. Mazur, Z.M. Wang, G.G. Tarasov, M. Xiao, G.J. Salamo, J.W. Tomm, V. Talalaev, H. Kissel, Appl. Phys. Lett. 86, 063102 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M.P. Stoykovich, M. Müller, S. Ouk Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, P.F. Nealey, Science 308, 1442–1446 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, Appl. Phys. B Lasers Opt. doi: 10.1007/s00340-012-5249-5 (online first 2012)
  15. 15.
    Y. Zhou, Z.L. Wang, Z.R. Ma, Y. Ebina, K. Takada, T. Sasaki, Curr. Nanosci. 3, 155–160 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    N. Murase, M. Ando, AIST Today 10, 10 (2010)Google Scholar
  17. 17.
    H. Ren, S. Xu, D. Ren, S.-T. Wu, Opt. Exp. 19, 1985–1990 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B Lasers Opt. 99, 415–422 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98, 283–289 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747–754 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K. Kitamura, T. Kawazoe, M. Ohtsu, Appl. Phys. B 107, 293–299 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122(024715), 1–5 (2005)Google Scholar
  23. 23.
    M. Ohtsu Eds., Progress in Nano-Electro-Optics II (Springer, Berlin, 2004)Google Scholar
  24. 24.
    S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279–285 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22(215605), 1–5 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Naoya Tate
    • 1
  • Yang Liu
    • 1
  • Tadashi Kawazoe
    • 1
  • Makoto Naruse
    • 2
  • Takashi Yatsui
    • 1
  • Motoichi Ohtsu
    • 1
  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations