Skip to main content
Log in

Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An ultra-sensitive photo-acoustic spectrometer using a 10.4 μm broadly tunable mid-IR external cavity quantum cascade laser (EC-QCL) coupled with optical feedback to an optical power buildup cavity with high reflectivity mirrors was developed and tested. A laser optical power buildup factor of 181 was achieved, which corresponds to an intra-cavity power of 9.6 W at a wavelength of 10.4 μm. With a photo-acoustic resonance cell placed inside the cavity this resulted in the noise-equivalent absorption coefficient of 1.9 × 10−10 cm−1 Hz−1/2, and a normalized noise-equivalent absorption of 1.1 × 10−11 cm−1 W Hz−1/2. A novel photo-acoustic signal normalization technique makes the photo-acoustic spectrometer’s response immune to changes and drifts in the EC-QCL excitation power, EC-QCL to cavity coupling efficiency and cavity mirrors aging and contamination. An automatic lock of the EC-QCL to the cavity and optical feedback phase optimization permitted long wavelength scans within the entire EC-QCL spectral tuning range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pushkarsky, G. Wysocki, F.K. Tittel, Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 487, 1–18 (2010)

    Article  ADS  Google Scholar 

  2. M.E. Webber, M. Pushkarsky, C.K.N. Patel, Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers. Appl. Opt. 42, 2119–2126 (2003)

    Article  ADS  Google Scholar 

  3. A. Miklos, P. Hess, Z. Bozoki, Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 72, 1937–1955 (2001)

    Article  ADS  Google Scholar 

  4. V.A. Kapitanov, Y.N. Ponomarev, High resolution ethylene absorption spectrum between 6035 and 6210 cm−1. Appl. Phys. B Lasers Opt. 90, 235–241 (2008)

    Article  ADS  Google Scholar 

  5. L.B. Kreuzer, Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934–2943 (1971)

    Article  ADS  Google Scholar 

  6. S.C. Thompson, J.L. Lopresti, E.M. Ring, H.G. Nepomuceno, J.J. Beard, W.J. Ballad, E.V. Carlson, Noise in miniature microphones. J. Acoust. Soc. Am. 111, 861–866 (2002)

    Article  ADS  Google Scholar 

  7. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, R. Hernberg, Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Opt. Express 13, 2453–2458 (2005)

    Article  ADS  Google Scholar 

  8. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  9. A.A. Kosterev, P.R. Buerki, L. Dong, M. Reed, T. Day, F.K. Tittel, QEPAS detector for rapid spectral measurements. Appl. Phys. B 100, 173–180 (2010)

    Article  ADS  Google Scholar 

  10. A. Rossi, R. Buffa, M. Scotoni, D. Bassi, S. Iannotta, A. Boschetti, Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry–Perot cavity. Appl. Phys. Lett. 87, 041110 (2005)

    Article  ADS  Google Scholar 

  11. B. Dahmani, L. Hollberg, R. Drullinger, Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876–878 (1987)

    Article  ADS  Google Scholar 

  12. M. Selker, A. Riddle, B. Paldus, System and method for gas analysis using doubly resonant photoacoustic spectroscopy. USA Patent 7263871 (2005)

  13. J. Ye, L.-S. Ma, J. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. JOSA B 15, 6–15 (1998)

    Article  ADS  Google Scholar 

  14. T.W. Hansch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980)

    Article  ADS  Google Scholar 

  15. A. Kachanov, S. Koulikov, Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium. USA Patent application 2011/0214479, 2 March (2010)

  16. M. Hippler, C. Mohr, K.A. Keen, E.D. McNaghten, Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy. J. Chem. Phys. 133, 044308 (2010)

    Article  ADS  Google Scholar 

  17. C.E. Tanner, B.P. Masteron, C.E. Wieman, Atomic beam collimation using a laser diode with a self-locking power buildup cavity. Opt. Lett. 13, 357–359 (1988)

    Article  ADS  Google Scholar 

  18. L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. JQSRT 110, 533–572 (2009)

    Article  ADS  Google Scholar 

  19. L. Gong, R. Lewicki, R.J. Griffin, J.H. Flynn, B.L. Lefer, F.K. Tittel, Atmospheric ammonia measurements in Houston TX using an external-cavity quantum cascade laser-based sensor. Atmos. Chem. Phys. 11, 9721–9733 (2011)

    Google Scholar 

  20. Ph Laurent, A. Clairon, Ch. Bréant, Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quant. Electron. 25, 1131–1142 (1989)

    Article  ADS  Google Scholar 

  21. J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, Trace detection with DFB lasers and cavity ring-down spectroscopy. Proc. SPIE 4485, 236–243 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Rice University group acknowledges financial support from a National Science Foundation (NSF) grant EEC-0540832 entitled “Mid-InfraRed Technologies for Health and the Environment (MIRTHE)”, and grant C-0586 from the Robert Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. K. Tittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachanov, A., Koulikov, S. & Tittel, F.K. Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser. Appl. Phys. B 110, 47–56 (2013). https://doi.org/10.1007/s00340-012-5250-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5250-z

Keywords

Navigation