Applied Physics B

, Volume 110, Issue 1, pp 39–45 | Cite as

Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing

  • Naoya Tate
  • Yang Liu
  • Tadashi Kawazoe
  • Makoto Naruse
  • Takashi Yatsui
  • Motoichi Ohtsu


We propose a novel method of coupling heterogeneous quantum dots at fixed distances and capsulating the coupled quantum dots by utilizing nanometric local curing of a photo-curable polymer caused by multistep electronic transitions based on a phonon-assisted optical near-field process between quantum dots. Because the coupling and the capsulating processes are triggered only when heterogeneous quantum dots floating in a solution closely approach each other to induce optical near-field interactions between them, the distances between the coupled quantum dots are physically guaranteed to be equal to the scale of the optical near fields. To experimentally verify our idea, we fabricated coupled quantum dots, consisting of CdSe and ZnO quantum dots and a UV-curable polymer. We also measured the photoluminescence properties due to the quantum-dot coupling and showed that the individual photoluminescences from the CdSe and ZnO quantum dots exhibited a trade-off relationship.


Polymer Molecule Couple State Intrinsic Energy Nanophotonic Device Spontaneous Emission Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A part of this work was supported by the Global Center of Excellence (G-COE) “Secure-Life Electronics”, Special Coordination Funds for Promoting Science and Technology sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the Strategic Information and Communications R&D Promotion Programme (SCOPE) sponsored by the Ministry of Internal Affairs and Communications (MIC).


  1. 1.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse (eds.), Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008)Google Scholar
  2. 2.
    T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122, 024715 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82(18), 2957 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86(10), 103102 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W. Nomura, T. Yatsui, T. Kawazoe, M. Ohtsu, J. Nanophotonics 1, 011591 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Naruse, K. Leibnitz, F. Peper, N. Tate, W. Nomura, T. Kawazoe, M. Murata, M. Ohtsu, Nano Commun. Netw. 2(4), 189 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Kawazoe, M. Ohtsu, S. Aso, Y. Sawado, Y. Hosoda, K. Yoshizawa, K. Akahane, N. Yamamoto, M. Naruse, Appl. Phys. B 103(3), 537 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88(6), 067404 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Z.Y. Xu, Z.D. Lu, X.P. Yang, Z.L. Yuan, B.Z. Zheng, J.Z. Xu, Phys. Rev. B 54(16), 11528 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    R. Heitz, I. Mukhametzhanov, P. Chen, A. Modhukar, Phys. Rev. B 58(16), R10151 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    A. Polimeni, A. Patane, M. Henini, L. Eaves, P.C. Main, Phys. Rev. B 59(7), 5064 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    YuI Mazur, ZhM Wang, G.G. Tarasov, M. Xiao, G.J. Salamo, J.W. Tomm, V. Talalaev, H. Kissel, Appl. Phys. Lett. 86(6), 063102 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93(5), 55 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B Lasers Opt. 99(3), 415 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Liu, T. Morishima, T. Yatsui, T. Kawazoe, M. Ohtsu, Nanotechnology 22(21), 215605 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104(4), 747 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98(2–3), 283 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Kitamura, T. Kawazoe, M. Ohtsu, Appl. Phys. B 107(2), 293 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Ohtsu (ed.), Progress in Nano-Electro-Optics II (Springer, Berlin, 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Naoya Tate
    • 1
  • Yang Liu
    • 1
  • Tadashi Kawazoe
    • 1
  • Makoto Naruse
    • 2
  • Takashi Yatsui
    • 1
  • Motoichi Ohtsu
    • 1
  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations