Skip to main content

Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS

Abstract

We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313 nm (4,324.4 cm−1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5 mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg–Marquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4 × 10−4 OD (1σ) in the flame (T up to 1,965 K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65 μm using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250–2,000 ppmv at peak CO concentrations of up to 4 vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff, Combust. Flame 113, 312–332 (1998)

    Article  Google Scholar 

  2. T. Kathrotia, Reaction kinetics modeling of OH*, CH*, and C2* chemiluminescence. Inaugural-Dissertation, Ruprecht-Karls-Universität Heidelberg, 2011

  3. C.I. Heghes, C1–C4 hydrocarbon oxidation mechanism. Inaugural-Dissertation, Ruprecht-Karls-Universität Heidelberg, 2006

  4. M. Mosburger, V. Sick, Appl. Phys. B 99, 1–6 (2010)

    ADS  Article  Google Scholar 

  5. S. Linow, A. Dreizler, J. Janicka, E.P. Hassel, Appl. Phys. B 71, 689–696 (2000)

    ADS  Article  Google Scholar 

  6. C.M. Drake, J.W. Ratcliffe, J. Chem. Phys. 98, 3850–3865 (1993)

    ADS  Article  Google Scholar 

  7. W. Demtröder, Laserspektroskopie - Grundlagen Und Techniken, 5. Auflage (Springer, Berlin, 2007)

    Google Scholar 

  8. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611–1618 (2005)

    Article  Google Scholar 

  9. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043–2051 (2003)

    ADS  Article  Google Scholar 

  10. M. Schoenung, R.K. Hanson, Combust. Sci. Technol. 24, 227–237 (1980)

    Article  Google Scholar 

  11. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745–8752 (1997)

    ADS  Article  Google Scholar 

  12. J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579–5589 (2000)

    ADS  Article  Google Scholar 

  13. M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407–413 (2000)

    Article  Google Scholar 

  14. B.J. Kirby, B.K. Hanson, Proc. Combust. Inst. 28, 253–259 (2000)

    Article  Google Scholar 

  15. M.J. Castaldi, A.M. Vincitore, S.M. Senkan, Combust. Sci. Technol. 107, 1–19 (1995)

    Article  Google Scholar 

  16. T. Melton, Proc. Combust. Inst. 27, 1631–1637 (1998)

    Google Scholar 

  17. A.V. Mokhov, B.A.V. Bennett, H.B. Levinsky, M.D. Smooke, Proc. Combust. Inst. 31, 997–1004 (2007)

    Article  Google Scholar 

  18. A. Mokhov, S. Gersen, H. Levinsky, Chem. Phys. Lett. 403, 233–237 (2005)

    ADS  Article  Google Scholar 

  19. F. Xu, Combust. Flame 71, 593–650 (2000)

    Google Scholar 

  20. H. Tsuji, I. Yamaoka, Proc. Combust. Inst. 13, 723–731 (1971)

    Google Scholar 

  21. T.S. Norton, K.C. Smyth, J.H. Miller, M.D. Smooke, Combust. Sci. Technol. 90, 1–34 (1993)

    Article  Google Scholar 

  22. I. Yamaoka, H. Tsuji, Proc. Combust. Inst. 16, 1145–1154 (1977)

    Google Scholar 

  23. H. Tsuji, Prog. Energy Combust. Sci. 8, 93–119 (1982)

    MathSciNet  Article  Google Scholar 

  24. V. Sick, in Symposium (International) on Combustion, vol. 23 (1990), pp. 495–501

  25. S. Wagner, B.T. Fisher, J. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839–846 (2009)

    Article  Google Scholar 

  26. S. Schäfer, M. Mashni, J. Sneider, A. Miklos, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, Appl. Phys. B 66, 511–516 (1998)

    ADS  Article  Google Scholar 

  27. H.E. Schlosser, J. Wolfrum, V. Ebert, B.A. Williams, R.S. Sheinson, J.W. Fleming, Proc. Combust. Inst. 29, 353–360 (2002)

    Article  Google Scholar 

  28. C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, in Handbook of experimental fluid mechanics, ed. by C. Tropea, A. Yarin, J. Foss (Springer, Berlin, 2007), pp. 1241–1316

    Chapter  Google Scholar 

  29. A.R. Awtry, J.W. Fleming, V. Ebert, Opt. Lett. 31, 900–902 (2006)

    ADS  Article  Google Scholar 

  30. A.R. Awtry, B.T. Fisher, R.A. Moffatt, V. Ebert, J.W. Fleming, Proc. Combust. Inst. 31, 799–806 (2007)

    Article  Google Scholar 

  31. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, Appl. Phys. B 75, 237–247 (2002)

    ADS  Article  Google Scholar 

  32. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009)

    ADS  Article  Google Scholar 

  33. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)

    ADS  Article  Google Scholar 

  34. J. Brubach, M. Hage, J. Janicka, A. Dreizler, Proc. Combust. Inst. 32, 855–861 (2009)

    Article  Google Scholar 

  35. U. Maas, Appl. Math. 3, 249–266 (1995)

    MathSciNet  Google Scholar 

  36. U. Maas, J. Warnatz, Combust. Flame 74, 53–69 (1988)

    Article  Google Scholar 

  37. S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 107–3, 585–589 (2012)

    ADS  Article  Google Scholar 

  38. J.A. Nwaboh, O. Werhahn, D. Schiel, Appl. Phys. B 103, 947–957 (2010)

    ADS  Article  Google Scholar 

  39. B.J. Kirby, R.K. Hanson, Appl. Phys. B 507, 505–507 (1999)

    ADS  Article  Google Scholar 

  40. A. Singh, M. Mann, T. Kissel, J. Brübach, A. Dreizler, Flow Turbul. Combust. (2012). doi:10.1007/s10494-011-9384-6

    Google Scholar 

  41. A.V. Mokhov, H.B. Levinsky, C.E. van der Meij, R.A.A.M. Jacobs, Appl. Opt. 34, 7074–7082 (1995)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the DFG (Deutsche Forschungsgemeinschaft) project number DFG EB 235/2-1, DFG EB 235/2-2, DFG RI 839/4-2, DFG AJ 544/37-2 and EXC 259 (Center of Smart Interfaces).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Ebert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, S., Klein, M., Kathrotia, T. et al. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS. Appl. Phys. B 109, 533–540 (2012). https://doi.org/10.1007/s00340-012-5242-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5242-z

Keywords

  • Diffusion Flame
  • Burner Surface
  • Line Strength
  • Flow Stagnation Point
  • Tunable Diode Laser Absorption Spectroscopy