Applied Physics B

, Volume 109, Issue 3, pp 533–540 | Cite as

Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS

  • Steven Wagner
  • Moritz Klein
  • Trupti Kathrotia
  • Uwe Riedel
  • Thilo Kissel
  • Andreas Dreizler
  • Volker Ebert
Article

Abstract

We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313 nm (4,324.4 cm−1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5 mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg–Marquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4 × 10−4 OD (1σ) in the flame (T up to 1,965 K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65 μm using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250–2,000 ppmv at peak CO concentrations of up to 4 vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.

References

  1. 1.
    H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff, Combust. Flame 113, 312–332 (1998)CrossRefGoogle Scholar
  2. 2.
    T. Kathrotia, Reaction kinetics modeling of OH*, CH*, and C2* chemiluminescence. Inaugural-Dissertation, Ruprecht-Karls-Universität Heidelberg, 2011Google Scholar
  3. 3.
    C.I. Heghes, C1–C4 hydrocarbon oxidation mechanism. Inaugural-Dissertation, Ruprecht-Karls-Universität Heidelberg, 2006Google Scholar
  4. 4.
    M. Mosburger, V. Sick, Appl. Phys. B 99, 1–6 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S. Linow, A. Dreizler, J. Janicka, E.P. Hassel, Appl. Phys. B 71, 689–696 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Drake, J.W. Ratcliffe, J. Chem. Phys. 98, 3850–3865 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    W. Demtröder, Laserspektroskopie - Grundlagen Und Techniken, 5. Auflage (Springer, Berlin, 2007)Google Scholar
  8. 8.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611–1618 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043–2051 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Schoenung, R.K. Hanson, Combust. Sci. Technol. 24, 227–237 (1980)CrossRefGoogle Scholar
  11. 11.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745–8752 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579–5589 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407–413 (2000)CrossRefGoogle Scholar
  14. 14.
    B.J. Kirby, B.K. Hanson, Proc. Combust. Inst. 28, 253–259 (2000)CrossRefGoogle Scholar
  15. 15.
    M.J. Castaldi, A.M. Vincitore, S.M. Senkan, Combust. Sci. Technol. 107, 1–19 (1995)CrossRefGoogle Scholar
  16. 16.
    T. Melton, Proc. Combust. Inst. 27, 1631–1637 (1998)Google Scholar
  17. 17.
    A.V. Mokhov, B.A.V. Bennett, H.B. Levinsky, M.D. Smooke, Proc. Combust. Inst. 31, 997–1004 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Mokhov, S. Gersen, H. Levinsky, Chem. Phys. Lett. 403, 233–237 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    F. Xu, Combust. Flame 71, 593–650 (2000)Google Scholar
  20. 20.
    H. Tsuji, I. Yamaoka, Proc. Combust. Inst. 13, 723–731 (1971)Google Scholar
  21. 21.
    T.S. Norton, K.C. Smyth, J.H. Miller, M.D. Smooke, Combust. Sci. Technol. 90, 1–34 (1993)CrossRefGoogle Scholar
  22. 22.
    I. Yamaoka, H. Tsuji, Proc. Combust. Inst. 16, 1145–1154 (1977)Google Scholar
  23. 23.
    H. Tsuji, Prog. Energy Combust. Sci. 8, 93–119 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    V. Sick, in Symposium (International) on Combustion, vol. 23 (1990), pp. 495–501Google Scholar
  25. 25.
    S. Wagner, B.T. Fisher, J. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839–846 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Schäfer, M. Mashni, J. Sneider, A. Miklos, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, Appl. Phys. B 66, 511–516 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    H.E. Schlosser, J. Wolfrum, V. Ebert, B.A. Williams, R.S. Sheinson, J.W. Fleming, Proc. Combust. Inst. 29, 353–360 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, in Handbook of experimental fluid mechanics, ed. by C. Tropea, A. Yarin, J. Foss (Springer, Berlin, 2007), pp. 1241–1316CrossRefGoogle Scholar
  29. 29.
    A.R. Awtry, J.W. Fleming, V. Ebert, Opt. Lett. 31, 900–902 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    A.R. Awtry, B.T. Fisher, R.A. Moffatt, V. Ebert, J.W. Fleming, Proc. Combust. Inst. 31, 799–806 (2007)CrossRefGoogle Scholar
  31. 31.
    E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, Appl. Phys. B 75, 237–247 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J. Brubach, M. Hage, J. Janicka, A. Dreizler, Proc. Combust. Inst. 32, 855–861 (2009)CrossRefGoogle Scholar
  35. 35.
    U. Maas, Appl. Math. 3, 249–266 (1995)MathSciNetGoogle Scholar
  36. 36.
    U. Maas, J. Warnatz, Combust. Flame 74, 53–69 (1988)CrossRefGoogle Scholar
  37. 37.
    S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 107–3, 585–589 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Nwaboh, O. Werhahn, D. Schiel, Appl. Phys. B 103, 947–957 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    B.J. Kirby, R.K. Hanson, Appl. Phys. B 507, 505–507 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    A. Singh, M. Mann, T. Kissel, J. Brübach, A. Dreizler, Flow Turbul. Combust. (2012). doi:10.1007/s10494-011-9384-6 Google Scholar
  41. 41.
    A.V. Mokhov, H.B. Levinsky, C.E. van der Meij, R.A.A.M. Jacobs, Appl. Opt. 34, 7074–7082 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Steven Wagner
    • 1
    • 2
  • Moritz Klein
    • 1
  • Trupti Kathrotia
    • 3
  • Uwe Riedel
    • 3
  • Thilo Kissel
    • 1
  • Andreas Dreizler
    • 1
  • Volker Ebert
    • 1
    • 2
  1. 1.Fachgebiet Reaktive Strömungen und Messtechnik, Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany
  3. 3.Universität Stuttgart and Institute of Combustion TechnologyGerman Aerospace CenterStuttgartGermany

Personalised recommendations