Skip to main content
Log in

Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Adomeit, H. Rohs, T. Körfer, H. Busch, in Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, Sept 2006, pp. 13–15

  2. S. Singh, R.D. Reitz, M.P.B. Musculus, T. Lachaux, Combust. Sci. Technol. 179, 2381 (2007)

    Article  Google Scholar 

  3. M. Gauding, T. Brands, C. Felsch, P. Hottenbach, C. Hasse, C. Pauls, G. Grünefeld, N. Peters, in European combustion meeting, Vienna, Austria (2009)

  4. J. E. Dec, SAE Technical Paper Series No. 970873 (1997)

  5. G.J. Smallwood, O.L. Gülder, Atomization Spray 10, 355 (2000)

    Google Scholar 

  6. D.G. Talley, J.F. Verdieck, S.W. Lee, V.G. McDonnell, G.S. Samuelsen, Paper AIAA-96-0469, in Presented at the thirty-fourth aerospace sciences meeting, Reno, Jan 1996

  7. C.N. Yeh, H. Kosaka, T. Kamimoto, in Proceedings of the 3rd congress on optical particle sizing, 1993, pp. 355–361

  8. G.J. Smallwood, O.L. Gülder, D.R. Snelling, in Twenty-fifth symposium (international) on combustion, 1994, pp. 371–379

  9. M.C. Jermy, D.A. Greenhalgh, Appl. Phys. B 71, 703 (2000)

    Article  ADS  Google Scholar 

  10. E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, M. Linne, Opt. Express 19, 13647 (2011)

    Article  ADS  Google Scholar 

  11. M. Paciaroni, M. Linne, Appl. Opt. 43, 5100 (2004)

    Article  ADS  Google Scholar 

  12. D. Sedarsky, E. Berrocal, M. Linne, Opt. Express 19, 1866 (2011)

    Article  ADS  Google Scholar 

  13. M. Linne, M. Paciaroni, T. Hall, T. Parker, Exp. Fluids 40, 836 (2006)

    Article  Google Scholar 

  14. C.F. Powell, S.A. Ciatti, S.K. Cheong, J. Liu, J. Wang, SAE Int. J. Fuels Lubr., Series No. 2004-01-2011 (2004)

  15. A. Kastengren, C.F. Powell, Z. Liu, J. Wang, SAE Int. J. Fuels Lubr., Series No. 2009-01-0840 (2009)

  16. Z. Liu, K. Im, X. Xie, Y. Wang, K. Fezzaa, M.C. Lai, J. Wang, in 11th international conference on liquid atomization and spray systems, paper 155, Vail, Colorado (2009)

  17. C.F. Powell, A.L. Kastengren, Z. Liu, K. Fezzaa, J. Eng. Gas Turbines Power 133, 012802 (2011)

    Article  Google Scholar 

  18. M. Linne, Exp. Fluids 52, 1251 (2011)

    Google Scholar 

  19. J.E. Labs, T.E. Parker, Appl. Opt. 44, 6049 (2005)

    Article  ADS  Google Scholar 

  20. J. Labs, T. Parker, Atomization Sprays 16, 843 (2006)

    Article  Google Scholar 

  21. E. Berrocal, E. Kristensson, M. Richter, M. Linne, M. Aldén, Opt. Express 16, 17870 (2008)

    Article  ADS  Google Scholar 

  22. E. Kristensson, E. Berrocal, M. Aldén, Opt. Lett. 36, 1656 (2011)

    Article  ADS  Google Scholar 

  23. R. Wellander, E. Berrocal, E. Kristensson, M. Richter, M. Aldén, Meas. Sci. Technol. 22, 125303 (2011)

    Article  ADS  Google Scholar 

  24. E. Berrocal, J. Johnsson, E. Kristensson, M. Alden, J. Eur. Opt. Soc. Rap. Publ. 7, 12015 (2012)

    Article  Google Scholar 

  25. C. Pauls, S. Vogel, G. Grünefeld, N. Peters, SAE 2007 transactions, J Fuels Lubr., Series No. 2007-01-0020 (2007)

  26. M. Cardenas, P. Hottenbach, R. Kneer, G. Grünefeld, SAE Int. J. Engines 2, 272 (2010)

    Google Scholar 

  27. W. Egler, R.J. Giersch, F. Boecking, J. Hammer, J. Hlousek, P. Mattes, U. Projahn, W. Urner, B. Janetzky, Fuel injection systems, in Handbook of diesel engines, ed. by K. Mollenhauer, H. Tschoeke (Springer, Berlin, 2010), p. 127

    Chapter  Google Scholar 

  28. R. Domann, Y. Hardalupas, Part. Part. Syst. Charact. 20, 209 (2003)

    Article  Google Scholar 

  29. G. Charalampous, Y. Hardalupas, Appl. Opt. 50, 1197 (2011)

    Article  ADS  Google Scholar 

  30. G. Charalampous, Y. Hardalupas, Appl. Opt. 50, 3622 (2011)

    Article  ADS  Google Scholar 

  31. E. Berrocal, D. Sedarsky, M. Paciaroni, I. Meglinski, M. Linne, Opt. Express 15, 10649 (2007)

    Article  ADS  Google Scholar 

  32. T. Kamimoto, in International symposium COMODIA, Yokohama, Japan (1994), pp. 33–41

  33. E. Berrocal, E. Kristensson, D. Sedarsky, M. Linne, in 11th international conference on liquid atomization and spray systems, paper 136, Vail, Colorado (2009)

  34. J.-S. Han, P.-H. Lu, X.-B. Xie, M.-C. Lai, N.A. Henein, SAE Technical Papers Series No. 2002-01-2775 (2002)

  35. C. Yeh, H. Kosaka, T. Kamimoto, Measurement of drop sizes in unsteady dense sprays, in Recent advances in spray combustion: spray atomization and drop burning phenomena, vol 1, American Institute of Aeronautics and Astronautics, Reston (1996)

  36. K.D. Kihm, D.P. Terracina, J.A. Caton, J. Inst. Energy 68, 57 (1995)

    Google Scholar 

  37. K.D. Khim, D.P. Terracina, S.E. Payne, J.A. Caton, J. Inst. Energy 67, 2 (1994)

    Google Scholar 

  38. J. Lacoste, C. Crua, M. Heikal, D. Kennaird, M. Gold, SAE Technical Paper Series No. 2003-01-3085 (2003)

  39. T. Brands, P. Hottenbach, H.-J. Koß, G. Grünefeld, S. Pischinger, in 15th international symposium on applications of laser techniques to fluid mechanics, Series No. 2-5-3, Lisbon, Portugal (2010)

  40. S. Baik, J. Blanchard, M. Corradini, SAE Technical Paper Series No. 2001-01-0528 (2001)

  41. A.H. Lefebvre, Atomization and Sprays (Hemisphere Publishing Corporation, New York, 1989)

    Google Scholar 

  42. R. Payri, L. Araneo, J. Shakal, V. Soare, J. Mech. Sci. Technol. 22, 1620 (2008)

    Article  Google Scholar 

  43. D.P. Schmidt, M.L. Corradini, Int. J. Engine Res. 2, 1 (2001)

    Article  Google Scholar 

  44. T.C. Wang, J.-S. Han, X.-B. Xie, M.-C. Lai, N.A. Henein, E. Schwarz, W. Bryzik, J. Eng. Gas Turbines Power 125, 412 (2003)

    Article  Google Scholar 

  45. J.B. Blaisot, J. Yon, Exp. Fluids 39, 977 (2005)

    Article  Google Scholar 

  46. D.L. Siebers, SAE Technical Paper Series No. 1999-01-0528 (1999)

  47. D. Han, R.R. Steeper, SAE Technical Paper Series No. 2002-01-0837 (2002)

  48. P. Hottenbach, T. Brands, G. Grünefeld, SAE Int. J. Engines 4, 800 (2011)

    Google Scholar 

  49. P. Hottenbach, T. Brands, T. Hülser, G. Grünefeld, SAE Technical Paper Series No. 2011-01-1825 (2011)

Download references

Acknowledgments

The authors would like to thank LaVision GmbH and Dr. Wissel more specifically, for providing both experimental equipment and assistance. The authors from Lund University wish to show their appreciation to the Linné Centre (within the Lund Laser Centre), the CECOST (through SSF and STEM), and the ERC Advanced Grant DALDECS for financial support. The Swedish Research Council (Vetenskapsrådet) is also acknowledged for supporting the Project 2011-4272. The authors from Aachen University acknowledge the support of the German Excellence Initiative in the framework of the CoE “Tailor-Made Fuels from Biomass.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Berrocal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrocal, E., Kristensson, E., Hottenbach, P. et al. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging. Appl. Phys. B 109, 683–694 (2012). https://doi.org/10.1007/s00340-012-5237-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5237-9

Keywords

Navigation