Skip to main content

TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets


We present a new, very simple to use and very easy to align, inexpensive, robust, mono-static optical hygrometer based on tunable diode laser absorption spectroscopy (TDLAS) that makes use of very inexpensive reflective foils as scattering targets at the distant side of the absorption path. Various alternative foils as scattering targets were examined concerning their reflective behaviour and their suitability for TDLAS applications. Using a micro prismatic reflection tape as the optimum scattering target we determined absolute water vapour concentrations employing open path TDLAS. With the reflection tape being in a distance of 75 cm to 1 m (i.e., absorption path lengths between 1.5 and 2 m) we detected ambient H2O concentrations of up to 12,300 ppmv with detectivities of 1 ppm which corresponds to length and bandwidth normalized H2O detection limits of up to 0.9 ppmv m/\( \sqrt {\text{Hz}} \), which is only a factor of 2 worse than our previous bi-static TDLAS setups (Hunsmann, Appl. Phys. B 92:393–401, 1). This small sensitivity disadvantage is well compensated for by the simplicity of the spectrometer setup and particularly by its extreme tolerance towards misalignment of the scattering target.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Appl. Phys. B 92, 393–401 (2008)

    ADS  Article  Google Scholar 

  2. Zimov, E. Schuur, F.S. Chapin, Science (New York, N.Y.) 312, 1612–1613 (2006)

  3. E. Schuur, J.G. Vogel, K.G. Crummer, H. Lee, J.O. Sickman, T.E. Osterkamp, Nature 459, 556–559 (2009)

    ADS  Article  Google Scholar 

  4. T. Nakano, S. Kuniyoshi, M. Fukuda, Atmos. Environ. 34, 1205–1213 (2000)

    Article  Google Scholar 

  5. C.B. Field, D.B. Lobell, H. Peters, N.R. Chiariello, Annu. Rev. Environ. Resour. 32, 1–29 (2007)

    Article  Google Scholar 

  6. M. Heimann, M. Reichstein, Nature 451, 289–292 (2008)

    ADS  Article  Google Scholar 

  7. M.L. Lopez C., E. Gerasimov, T. Machimura, F. Takakai, G. Iwahana, N. Fedorov, M. Fukuda, Agric. Forest Meteorol. 148, 1968–1977 (2008)

  8. E.M. Weinstock, J.B. Smith, D.S. Sayres, J.V. Pittman, J.R. Spackman, E.J. Hintsa, T.F. Hanisco, E.J. Moyer, J.M. St Clair, M.R. Sargent, J.G. Anderson, J. Geophys. Res. 114, 1–24 (2009)

    Article  Google Scholar 

  9. R. May, J. Geophys. Res. 103, 19161–19172 (1998)

    ADS  Article  Google Scholar 

  10. M. Zöger, A. Afchine, N. Eicke, M. Gerhards, E. Klein, D.S. Mckenna, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller 104, 1807–1816 (1999)

    Google Scholar 

  11. M. a. Zondlo, M.E. Paige, S.M. Massick, J. a. Silver, J. Geophys. Res. 115, 1–14 (2010)

    Google Scholar 

  12. P.L. Kebabian, J. Geophys. Res. 107, 1–14 (2002)

    Article  Google Scholar 

  13. M. Szakáll, Z. Bozóki, M. Kraemer, N. Spelten, O. Moehler, U. Schurath, Environ. Sci. Technol. 35, 4881–4885 (2001)

    Article  Google Scholar 

  14. Z. Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, Z. Bor, Sens. Actuators B Chem. 91, 219–226 (2003)

    Article  Google Scholar 

  15. M. Szakáll, J. Csikós, Á. Mohácsi, Z. Bozóki, G. Szabó, A. Zahn 8, 2–3 (2006)

    Google Scholar 

  16. S. Wagner, B.T. Fisher, J. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839–846 (2009)

    Article  Google Scholar 

  17. P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, V. Ebert, Exp. Fluids 49, 961–968 (2010)

    Article  Google Scholar 

  18. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Appl. Opt. 48, B172–B182 (2009)

    ADS  Article  Google Scholar 

  19. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043–2051 (2003)

    ADS  Article  Google Scholar 

  20. T. Fernholz, H. Pitz, V. Ebert, in Laser Applications to Chemical and Environmental Analysis (Optical Society of America, 2000), pp. 4–6

  21. J. Chen, a. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B 100, 417–425 (2010)

  22. T. Iseki, H. Tai, Meas. Sci. Technol. 11, 594–602 (2000)

    ADS  Article  Google Scholar 

  23. K. Wunderle, T. Fernholz, V. Ebert, VDI Berichte 1959, 137–148 (2006)

    Google Scholar 

  24. S. Hunsmann, S. Wagner, H. Saathoff, O. Moehler, U. Schurath, V. Ebert, O. Möhler, VDI Berichte 1959, 149–164 (2006)

    Google Scholar 

  25. V. Ebert, J. Wolfrum, in Optical Measurements—Techniques and Applications, 2nd edn., ed. by F. Mayinger (Springer, Berlin, 2011), pp. 227–265

    Google Scholar 

  26. C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, in Handbook of Experimental Fluid Mechanics, ed. by C. Tropea, A. Yarin, J. Foss (Springer, Heidelberg, 2007), pp. 1241–1316

    Chapter  Google Scholar 

  27. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009)

    ADS  Article  Google Scholar 

  28. D. Fahey, R. Gao, (2009).

  29. N. Anikin, R. Suntz, H. Bockhorn, Appl. Phys. B 100, 675–694 (2010)

    ADS  Article  Google Scholar 

  30. N. Terzija, J.L. Davidson, C. Garcia-Stewart, P. Wright, K.B. Ozanyan, S. Pegrum, T.J. Litt, H. McCann, Meas. Sci. Technol. 19, 094007 (2008)

    ADS  Article  Google Scholar 

  31. S. Pal, K.B. Ozanyan, H. McCann, Meas. Sci. Technol. 19, 094018 (2008)

    ADS  Article  Google Scholar 

  32. V.L. Kasyutich, P. Martin, Appl. Phys. B 102, 149–162 (2010)

    ADS  Article  Google Scholar 

Download references


This project is funded by the Deutsche Forschungsgemeinschaft (DFG) within the postgraduate program GRK1114. It is located in the Center of Smart Interfaces (DFG Cluster of Excellence 259).

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Ebert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seidel, A., Wagner, S. & Ebert, V. TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets. Appl. Phys. B 109, 497–504 (2012).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Tunable Diode Laser Absorption Spectroscopy
  • Capacitive Pressure Sensor
  • Absorption Path Length
  • Water Vapour Measurement
  • Reflective Target