Applied Physics B

, Volume 109, Issue 3, pp 497–504 | Cite as

TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets

Article

Abstract

We present a new, very simple to use and very easy to align, inexpensive, robust, mono-static optical hygrometer based on tunable diode laser absorption spectroscopy (TDLAS) that makes use of very inexpensive reflective foils as scattering targets at the distant side of the absorption path. Various alternative foils as scattering targets were examined concerning their reflective behaviour and their suitability for TDLAS applications. Using a micro prismatic reflection tape as the optimum scattering target we determined absolute water vapour concentrations employing open path TDLAS. With the reflection tape being in a distance of 75 cm to 1 m (i.e., absorption path lengths between 1.5 and 2 m) we detected ambient H2O concentrations of up to 12,300 ppmv with detectivities of 1 ppm which corresponds to length and bandwidth normalized H2O detection limits of up to 0.9 ppmv m/\( \sqrt {\text{Hz}} \), which is only a factor of 2 worse than our previous bi-static TDLAS setups (Hunsmann, Appl. Phys. B 92:393–401, 1). This small sensitivity disadvantage is well compensated for by the simplicity of the spectrometer setup and particularly by its extreme tolerance towards misalignment of the scattering target.

References

  1. 1.
    S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Appl. Phys. B 92, 393–401 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Zimov, E. Schuur, F.S. Chapin, Science (New York, N.Y.) 312, 1612–1613 (2006)Google Scholar
  3. 3.
    E. Schuur, J.G. Vogel, K.G. Crummer, H. Lee, J.O. Sickman, T.E. Osterkamp, Nature 459, 556–559 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    T. Nakano, S. Kuniyoshi, M. Fukuda, Atmos. Environ. 34, 1205–1213 (2000)CrossRefGoogle Scholar
  5. 5.
    C.B. Field, D.B. Lobell, H. Peters, N.R. Chiariello, Annu. Rev. Environ. Resour. 32, 1–29 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Heimann, M. Reichstein, Nature 451, 289–292 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M.L. Lopez C., E. Gerasimov, T. Machimura, F. Takakai, G. Iwahana, N. Fedorov, M. Fukuda, Agric. Forest Meteorol. 148, 1968–1977 (2008)Google Scholar
  8. 8.
    E.M. Weinstock, J.B. Smith, D.S. Sayres, J.V. Pittman, J.R. Spackman, E.J. Hintsa, T.F. Hanisco, E.J. Moyer, J.M. St Clair, M.R. Sargent, J.G. Anderson, J. Geophys. Res. 114, 1–24 (2009)CrossRefGoogle Scholar
  9. 9.
    R. May, J. Geophys. Res. 103, 19161–19172 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Zöger, A. Afchine, N. Eicke, M. Gerhards, E. Klein, D.S. Mckenna, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller 104, 1807–1816 (1999)Google Scholar
  11. 11.
    M. a. Zondlo, M.E. Paige, S.M. Massick, J. a. Silver, J. Geophys. Res. 115, 1–14 (2010)Google Scholar
  12. 12.
    P.L. Kebabian, J. Geophys. Res. 107, 1–14 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Szakáll, Z. Bozóki, M. Kraemer, N. Spelten, O. Moehler, U. Schurath, Environ. Sci. Technol. 35, 4881–4885 (2001)CrossRefGoogle Scholar
  14. 14.
    Z. Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, Z. Bor, Sens. Actuators B Chem. 91, 219–226 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Szakáll, J. Csikós, Á. Mohácsi, Z. Bozóki, G. Szabó, A. Zahn 8, 2–3 (2006)Google Scholar
  16. 16.
    S. Wagner, B.T. Fisher, J. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839–846 (2009)CrossRefGoogle Scholar
  17. 17.
    P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, V. Ebert, Exp. Fluids 49, 961–968 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Appl. Opt. 48, B172–B182 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043–2051 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    T. Fernholz, H. Pitz, V. Ebert, in Laser Applications to Chemical and Environmental Analysis (Optical Society of America, 2000), pp. 4–6Google Scholar
  21. 21.
    J. Chen, a. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B 100, 417–425 (2010)Google Scholar
  22. 22.
    T. Iseki, H. Tai, Meas. Sci. Technol. 11, 594–602 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    K. Wunderle, T. Fernholz, V. Ebert, VDI Berichte 1959, 137–148 (2006)Google Scholar
  24. 24.
    S. Hunsmann, S. Wagner, H. Saathoff, O. Moehler, U. Schurath, V. Ebert, O. Möhler, VDI Berichte 1959, 149–164 (2006)Google Scholar
  25. 25.
    V. Ebert, J. Wolfrum, in Optical Measurements—Techniques and Applications, 2nd edn., ed. by F. Mayinger (Springer, Berlin, 2011), pp. 227–265Google Scholar
  26. 26.
    C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, in Handbook of Experimental Fluid Mechanics, ed. by C. Tropea, A. Yarin, J. Foss (Springer, Heidelberg, 2007), pp. 1241–1316CrossRefGoogle Scholar
  27. 27.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009)ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    N. Anikin, R. Suntz, H. Bockhorn, Appl. Phys. B 100, 675–694 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    N. Terzija, J.L. Davidson, C. Garcia-Stewart, P. Wright, K.B. Ozanyan, S. Pegrum, T.J. Litt, H. McCann, Meas. Sci. Technol. 19, 094007 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S. Pal, K.B. Ozanyan, H. McCann, Meas. Sci. Technol. 19, 094018 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    V.L. Kasyutich, P. Martin, Appl. Phys. B 102, 149–162 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Reactive Flows and Diagnostics, Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations