Skip to main content
Log in

Superconducting microwave cavity towards controlling the motion of polar molecules

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose the use of superconducting microwave cavities for the focusing and deceleration of cold polar molecular beams. A superconducting cavity with a high quality factor produces a large ac Stark shift in polar molecules, which allow us to efficiently control molecular motion. Our discussion is based on the experimental characterization of a prototype cavity: a lead–tin-coated cylindrical copper cavity, which has a quality factor of 106 and tolerates several watts of input power. Such a microwave device provides a powerful way to control molecules not only in low-field-seeking states, but also in high-field-seeking states such as the ground rotational state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Reuss, in Atomic and Molecular Beam Methods, ed. by G. Scoles, D. Bassi, U. Buck, D. Lainé (Oxford University Press, New York, 1988)

  2. O. Stern, Z. Phys. 7, 249 (1921)

    Article  ADS  Google Scholar 

  3. W. Gerlach, O. Stern, Z. Phys. 9, 353 (1922)

    Article  ADS  Google Scholar 

  4. J.D. Weinstein et al., Nature (London) 395, 148 (1998)

    Article  ADS  Google Scholar 

  5. H.L. Bethlem et al., Nature 406, 491 (2000)

    Article  ADS  Google Scholar 

  6. J. van Veldhoven, H.L. Bethlem, G. Meijer, Phys. Rev. Lett. 94, 083001 (2005)

    Article  ADS  Google Scholar 

  7. S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)

    Article  ADS  Google Scholar 

  8. H. Tsuji, T. Sekiguchi, T. Mori, T. Momose, H. Kanamori, J. Phys. B At. Mol. Opt. Phys. 43, 095202 (2010)

    Article  ADS  Google Scholar 

  9. N. Vanhaecke, U. Meier, M. Andrist, B.H. Meier, F. Merkt, Phys. Rev. A 75, 031402 (2007)

    Article  ADS  Google Scholar 

  10. E. Narevicius et al., Phys. Rev. A 77, 051401 (2008)

    Article  ADS  Google Scholar 

  11. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  12. R.V. Krems, W.C. Stwalley, B. Friedrich (eds.), Cold Molecules, Theory, Experiment, Applications (CRC Press, Boca Raton, 2009)

  13. J.J. Hudson et al., Nature 473, 493 (2011)

    Article  ADS  Google Scholar 

  14. T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 92, 223001 (2004)

    Article  ADS  Google Scholar 

  15. T.E. Wall et al., Phys. Rev. A 80, 043407 (2009)

    Article  ADS  Google Scholar 

  16. H.L. Bethlem, A.J.A. van Roij, R.T. Jongma, G. Meijer, Phys. Rev. Lett. 88, 133003 (2002)

    Article  ADS  Google Scholar 

  17. M.R. Tarbutt et al., Phys. Rev. Lett. 92, 173002 (2004)

    Article  ADS  Google Scholar 

  18. K. Wohlfart et al., Phys. Rev. A 77, 031404 (2008)

    Article  ADS  Google Scholar 

  19. H.J. Loesch, B. Scheel, Phys. Rev. Lett. 85, 2709 (2000)

    Article  ADS  Google Scholar 

  20. M. Strebel, S. Spieler, F. Stienkemeier, M. Mudrich, Phys. Rev. A 84, 053430 (2011)

    Article  ADS  Google Scholar 

  21. R. Fulton, A.I. Bishop, P.F. Barker, Phys. Rev. Lett. 93, 243004 (2004)

    Article  ADS  Google Scholar 

  22. R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nat. Phys. 2, 465 (2006)

    Article  Google Scholar 

  23. Z. Lan, Y. Zhao, P.F. Barker, W. Lu, Phys. Rev. A 81, 013419 (2010)

    Article  ADS  Google Scholar 

  24. V. Vuletić, S. Chu, Phys. Rev. Lett. 84, 3787 (2000)

    Article  ADS  Google Scholar 

  25. S. Kuma, T. Momose, New. J. Phys. 11, 055023 (2009)

    Article  ADS  Google Scholar 

  26. Z. Lan, Y. Zhao, P.F. Barker, W. Lu, Phys. Rev. A 81, 013419 (2010)

    Article  ADS  Google Scholar 

  27. D. DeMille, D.R. Glenn, J. Petricka, Eur. Phys. J. D 31, 375 (2004)

    Article  ADS  Google Scholar 

  28. D.R. Glenn, Ph.D. thesis, Yale University (2009)

  29. K. Enomoto, T. Momose, Phys. Rev. A 72, 061403 (2005)

    Article  ADS  Google Scholar 

  30. R. Hill, T. Gallagher, Phys. Rev. A 12, 451 (1975)

    Article  ADS  Google Scholar 

  31. H. Odashima, S. Merz, K. Enomoto, M. Schnell, G. Meijer, Phys. Rev. Lett. 104, 253001 (2010)

    Article  ADS  Google Scholar 

  32. S. Merz, N. Vanhaecke, W. Jäger, M. Schnell, G. Meijer, Phys. Rev. A 85, 063411 (2012)

    Article  ADS  Google Scholar 

  33. M. Kajita, A.V. Avdeenkov, Eur. Phys. J. D 41, 499 (2007)

    Article  ADS  Google Scholar 

  34. S.V. Alyabyshev, R.V. Krems, Phys. Rev. A. 80, 033419 (2009)

    Article  ADS  Google Scholar 

  35. S.E. Maxwell et al., Phys. Rev. Lett. 95, 173201 (2005)

    Article  ADS  Google Scholar 

  36. P. Schmüser, Prog. Part. Nucl. Phys. 49, 155 (2002); and references therein.

  37. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  39. J. Gadhi, A. Lahrouni, J. Legrand, J. Demaison, J. Chim. Phys. 92, 1984 (1995)

    Google Scholar 

  40. C.G. Montgomery, Technique of Microwave Measurements (McGraw-Hill, New York, 1947)

    Google Scholar 

  41. D.M. Pozar, Microwave Engineering (Wiley, Hoboken, 2005)

    Google Scholar 

  42. J. Halbritter, Z. Phys. 238, 466 (1970)

    Article  ADS  Google Scholar 

  43. H.A. Bethe, Phys. Rev. 66, 163 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. C.J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  45. N.A. McDonald, IEEE Trans. Microwav Theory Tech. 20, 689 (1972)

    Article  ADS  Google Scholar 

  46. A. Roberts, J. Opt. Soc. Am. A 4, 1970 (1987)

    Article  ADS  Google Scholar 

  47. A.Y. Nikitin, D. Zueco, F.J. García-Vidal, L. Martín-Moreno, Phys. Rev. B 78, 165429 (2008)

    Article  ADS  Google Scholar 

  48. W.H. Warren Jr, W.G. Bader, Rev. Sci. Instrum. 40, 180 (1968)

    Article  ADS  Google Scholar 

  49. D.A. Ackerman, A.C. Anderson, Rev. Sci. Instrum. 53, 1657 (1982)

    Article  ADS  Google Scholar 

  50. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge D. DeMille and G. Meijer for their helpful advice and M. Schnell, A. Simon, H. Odashima, M. Kajita, F. Matsushima, and K. Kobayashi for their fruitful discussion. We also thank B. Ramshaw and D. Bonn for helping us perform the electroplating. This work is supported by an NSERC Discovery Grant and funds from CFI to CRUCS at UBC. This work is also partially supported by Grant-in-Aid for Scientific Research of JSPS (19840021, 21740300, 22104504), Matsuo foundation, Inamori foundation. K.E. acknowledges support from the Excellent Young Researchers Overseas Visit Program of JSPS for allowing him to visit UBC to perform this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsunari Enomoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, K., Djuricanin, P., Gerhardt, I. et al. Superconducting microwave cavity towards controlling the motion of polar molecules. Appl. Phys. B 109, 149–157 (2012). https://doi.org/10.1007/s00340-012-5192-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5192-5

Keywords

Navigation