Skip to main content
Log in

Effect of refractive index mismatch aberration in arsenic trisulfide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate compensation for the spherical aberration due to the refractive index mismatch that occurs when a laser beam is focused into a thick arsenic trisulfide (As\(_2\)S\(_3\)) film with a high numerical aperture objective. The effects of the aberration at different focal depths on the point spread function have been calculated numerically and the axial response method shown to be a useful measure for compensating the spherical aberration. We show that with the addition of adaptive optics based on a spatial light modulator, the aberration can be significantly reduced, resulting in an increase in peak intensity by a factor of 2.4 and a decrease in axial elongation by a factor of 2.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.S. Rodney, I.H. Malitson, T.A. King, J. Opt. Soc. Am. 48, 633–635 (1958)

    Google Scholar 

  2. D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman, Appl. Phys. Lett. 54, 1293–1295 (1989)

    Article  ADS  Google Scholar 

  3. H. Kobayashi, H. Kanbara, M. Koga, K. Kubodera, J. Appl. Phys. 74, 3683–3687 (1993)

    Google Scholar 

  4. R. Frerichs, J. Opt. Soc. Am. A 43, 1153–1157 (1953)

    Article  ADS  Google Scholar 

  5. J. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal, J. Lightwave Technol. 17, 1184 (1999)

    Article  ADS  Google Scholar 

  6. W.T. Li, Y.L. Ruan, B. Luther-Davies, A. Rode, R. Boswell, J. Vac. Sci. Technol. A 26, 1626–1632 (2005)

    Article  ADS  Google Scholar 

  7. T. Han, S. Madden, D. Bulla, B. Luther-Davies, Opt. Express 18, 19286–19291 (2010)

    Article  ADS  Google Scholar 

  8. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, Appl. Phys. Lett. 83, 4480 (2003)

    Article  ADS  Google Scholar 

  9. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, R. Vallée, Opt. Lett. 29, 748–750 (2004)

    Article  ADS  Google Scholar 

  10. S. Juodkazis, T. Kondo, H. Misawa, A. Rode, M. Samoc, B. Luther-Davies, Opt. Express 14, 7751–7756 (2006)

    Article  ADS  Google Scholar 

  11. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson, Opt. Lett. 37, 392–394 (2012)

    Article  ADS  Google Scholar 

  12. S. Wong, M. Deubel, F. Prez-Willard, S. John, G.A. Ozin, M. Wegener, G. von Freymann, Adv. Mater. 18, 265–269 (2006)

    Article  Google Scholar 

  13. E. Nicoletti, G. Zhou, B. Jia, M.J. Ventura, D. Bulla, B. Luther-Davies, M. Gu, Opt. Lett. 33, 2311–2313 (2008)

    Article  ADS  Google Scholar 

  14. E. Nicoletti, D. Bulla, B. Luther-Davies, M. Gu, Opt. Lett. 36, 2248–2250 (2011)

    Article  ADS  Google Scholar 

  15. P. Török, P. Varga, Z. Laczik, G.R. Booker, J. Opt. Soc. Am. B 12, 325–332 (1995)

    Article  Google Scholar 

  16. M. Gu, Advanced optical imaging theory (Springer, Heidelberg, 2000)

  17. S. Wong, O. Kiowski, M. Kappes, J.K.N. Lindner, N. Mandal, F.C. Peiris, G.A. Ozin, M. Thiel, M. Braun, M. Wegener, G von Freymann. Adv. Mat. 20, 4097–4102 (2008)

    Google Scholar 

  18. M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, S. Miyata, Appl. Phys. Lett. 88, 031109 (2006)

    Article  ADS  Google Scholar 

  19. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, Opt. Express 16, 5481–5492 (2008)

    Google Scholar 

  20. A. Jesacher, M.J. Booth, Opt. Express 18, 21090–21099 (2010)

    Article  ADS  Google Scholar 

  21. B.P. Cumming, A. Jesacher, M.J. Booth, T. Wilson, M. Gu, Opt. Express 19, 9419–9425 (2011)

    Article  ADS  Google Scholar 

  22. C.J.R. Sheppard, M. Gu, Opt. Commun. 88, 180–190 (1992)

    Google Scholar 

  23. M. Born, E. Wolf, Principles of optics (Pergamon, New York, 1980)

Download references

Acknowledgments

This research was conducted by the Australian Research Council Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (Project Number CE110001018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumming , B.P., Debbarma , S., Luther-Davies , B. et al. Effect of refractive index mismatch aberration in arsenic trisulfide. Appl. Phys. B 109, 227–232 (2012). https://doi.org/10.1007/s00340-012-5180-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5180-9

Keywords

Navigation