Skip to main content
Log in

Design and experimental validation of novel optics-based autofocusing microscope

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This study designs and characterizes a novel precise optics-based autofocusing microscope with both the large linear autofocusing range and the rapid response. In contrast to conventional optics-based autofocusing microscopes with centroid method, the proposed microscope comprises two optical paths, namely one optical path which provides a short linear autofocusing range but an extremely high focusing accuracy and a second optical path which achieves a long linear autofocusing range but a reduced focusing accuracy. The two optical paths are combined using a self-written autofocus-processing algorithm to realize an autofocusing microscope with a large linear autofocusing range, a rapid response, and a high focusing accuracy. The microscope is characterized numerically using commercial software ZEMAX and is then verified experimentally using a laboratory-built prototype. The experimental results show that compared to conventional optics-based autofocusing microscopes with centroid method and a single optical path, the proposed microscope achieves both a longer autofocusing range and a more rapid response with no reduction in the focusing accuracy. Overall, the results presented in this study show that the proposed microscope provides an ideal solution for automatic optical inspection and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16

Similar content being viewed by others

References

  1. J.H. Kang, C.B. Lee, J.Y. Joo, S.K. Lee, Phase-locked loop based on machine surface topography measurement using lensed fibers. Appl. Opt. 50, 460–467 (2011)

    Article  Google Scholar 

  2. P. Petruck, R. Riesenberg, R. Kowarschik, Optimized coherence parameters for high resolution holographic microscopy. Appl. Phys. B 106, 339–348 (2012)

    Article  ADS  Google Scholar 

  3. Z. Zhang, Q. Feng, Z. Gao, C. Kuang, C. Fei, Z. Li, J. Ding, A new laser displacement sensor based on triangulation for gauge real-time measurement. Opt. Laser Technol. 40, 252–255 (2008)

    Article  ADS  Google Scholar 

  4. W.Y. Hsu, C.S. Lee, P.J. Chen, N.T. Chen, F.Z. Chen, Z.R. Yu, C.H. Kuo, C.H. Hwang, Development of the fast astigmatic auto-focus microscope system. Meas. Sci. Technol. 20, 045902-1–045902-9 (2009)

    Article  ADS  Google Scholar 

  5. S.B. Andersson, A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope. Appl. Phys. B 104, 161–173 (2011)

    Article  ADS  Google Scholar 

  6. J.G. Ritter, R. Veith, J.P. Siebrasse, U. Kubitscheck, High-contrast single-particle tracking by selective focal plane illumination microscopy. Opt. Express 16, 7142–7152 (2008)

    Article  ADS  Google Scholar 

  7. P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, G. Pellacani, Reflectance confocal microscopy for in vivo skin imaging. Photochem. Photobiol. 84, 1421–1430 (2008)

    Article  Google Scholar 

  8. M. Zeder, J. Pernthaler, Multispot live-image autofocusing for high-throughput microscopy of fluorescently stained bacteria. Cytom. Part A 75A, 781–788 (2009)

    Article  Google Scholar 

  9. T. Pengo, A. Munoz-Barrutia, C. Ortiz-De-Solorzano, Halton sampling for autofocus. J. Microsc. 235, 50–58 (2009)

    Article  MathSciNet  Google Scholar 

  10. H.C. Chang, T.M. Shih, N.Z. Chen, N.W. Pu, A microscope system based on bevelaxial method auto-focus. Opt. Lasers Eng. 47, 547–551 (2009)

    Article  Google Scholar 

  11. C.Y. Chen, R.C. Hwang, Y.J. Chen, A passive auto-focus camera control system. Appl. Soft Comput. 10, 296–303 (2010)

    Article  Google Scholar 

  12. M.A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, M.C. Chavez-Sanchez, Fast autofocus algorithm for automated microscopes. Opt. Eng. 44, 063601-1–063601-8 (2005)

    Article  ADS  Google Scholar 

  13. V.V. Bezzubik, S.N. Ustinov, N.R. Belashenkov, Optimization of algorithms for autofocusing a digital microscope. J. Opt. Technol. 76(10), 603–608 (2009)

    Article  Google Scholar 

  14. Y. Liron, Y. Paran, N.G. Zatorsky, B. Geiger, Z. Kam, Laser autofocusing system for high-resolution cell biological imaging. J. Microsc. 221, 145–151 (2006)

    Article  MathSciNet  Google Scholar 

  15. J.H. Lee, Y.S. Kim, S.R. Kim, I.H. Lee, H.J. Pahk, Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm. Opt. Lasers Eng. 46, 558–569 (2008)

    Article  Google Scholar 

  16. S.L. Brazdilova, M. Kozubek, Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions. J. Microsc. 236, 194–202 (2009)

    Article  MathSciNet  Google Scholar 

  17. S. Yazdanfar, K.B. Kenny, K. Tasimi, A.D. Corwin, E.L. Dixon, R.J. Filkins, Simple and robust image-based autofocusing for digital microscopy. Opt. Express 16, 8670–8677 (2008)

    Article  ADS  Google Scholar 

  18. C.H. Chen, T.L. Feng, Fast 3D shape recovery of a rough mechanical component from real time passive autofocus system. Int. J. Adv. Manuf. Technol. 34, 944–957 (2007)

    Article  Google Scholar 

  19. E.F. Wright, D.M. Wells, A.P. French, C. Howells, N.M. Everitt, A low-cost automated focusing system for time-lapse microscopy. Meas. Sci. Technol. 20, 027003-1–027003-4 (2009)

    Article  ADS  Google Scholar 

  20. H. Oku, M. Ishikawa, High-speed autofocusing of a cell using diffraction patterns. Opt. Express 14, 3952–3960 (2006)

    Article  ADS  Google Scholar 

  21. P. Langehanenberg, B. Kemper, D. Dirksen, G. von Bally, Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl. Opt. 47, D176–D182 (2008)

    Article  ADS  Google Scholar 

  22. T. Kim, T.C. Poon, Autofocusing in optical scanning holography. Appl. Opt. 48, H153–H159 (2009)

    Article  Google Scholar 

  23. S. Lee, J.Y. Lee, W. Yang, D.Y. Kim, Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy. Opt. Express 17, 6476–6486 (2009)

    Article  ADS  Google Scholar 

  24. M. Moscaritolo, H. Jampel, F. Knezevich, R. Zeimer, An image based auto-focusing algorithm for digital fundus photography. IEEE Trans. Med. Imaging 28, 1703–1707 (2009)

    Article  Google Scholar 

  25. Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, High-speed spectrally resolved multifocal multiphoton microscopy. Appl. Phys. B 99, 633–637 (2010)

    Article  ADS  Google Scholar 

  26. S.J. Abdullah, M.M. Ratnam, Z. Samad, Error-based autofocus system using image feedback in a liquid-filled diaphragm lens. Opt. Eng. 48, 123602-1–123602-9 (2009)

    Article  ADS  Google Scholar 

  27. R.M. Wasserman, P.G. Gladnick, K.W. Atherton, Systems and methods for rapidly automatically focusing a machine vision inspection system, U.S. Patent 7030351B2 (2006)

  28. J.Y. Lee, Y.H. Wang, L.J. Lai, Y.J. Lin, Y.H. Chang, Development of an auto-focus system based on the Moiré method. Measurement 44, 1793–1800 (2011)

    Article  Google Scholar 

  29. I. Chremmos, N.K. Efremidis, D.N. Christodoulides, Pre-engineered abruptly autofocusing beams. Opt. Lett. 36, 1890–1892 (2011)

    Article  ADS  Google Scholar 

  30. B.J. Jung, H.J. Kong, B.G. Jeon, D.Y. Yang, Y. Son, K.S. Lee, Autofocusing method using fluorescence detection for precise two-photon nanofabrication. Opt. Express 19, 22659–22668 (2011)

    Article  ADS  Google Scholar 

  31. P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36, 2883–2885 (2011)

    Article  ADS  Google Scholar 

  32. D.K. Cohen, W.H. Gee, M. Ludeke, J. Lewkowicz, Automatic focus control: the astigmatic lens approach. Appl. Opt. 23, 565–570 (1984)

    Article  ADS  Google Scholar 

  33. K.C. Fan, C.L. Chu, J.I. Mou, Development of a low-cost autofocusing probe for profile measurement. Meas. Sci. Technol. 12, 2137–2146 (2001)

    Article  ADS  Google Scholar 

  34. Q.P. Li, F. Ding, P. Fang, Flash CCD laser displacement sensor. Electron. Lett. 42, 910–912 (2006)

    Article  Google Scholar 

  35. Y. Tanaka, T. Watanabe, K. Hamamoto, H. Kinoshita, Development of nanometer resolution focus detector in vacuum for extreme ultraviolet microscope. Jpn. J. Appl. Phys. 45, 7163–7166 (2006)

    Article  ADS  Google Scholar 

  36. S.J. Lee, D.Y. Chang, A laser sensor with multiple detectors for freeform surface digitization. Int. J. Adv. Manuf. Technol. 31, 1181–1190 (2007)

    Article  Google Scholar 

  37. Z. Li, K. Wu, Autofocus system for space cameras. Opt. Eng. 44, 053001-1–053001-5 (2005)

    ADS  Google Scholar 

  38. H.G. Rhee, D.I. Kim, Y.W. Lee, Realization and performance evaluation of high speed autofocusing for direct laser lithography. Rev. Sci. Instrum. 80, 073103-1–073103-5 (2009)

    Article  ADS  Google Scholar 

  39. Y. Nishio, Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program, U.S. Patent 7489410B2 (2009)

  40. M. Kataoka, K. Nemoto, Focusing servo device and focusing servo method, U.S. Patent 7187630B2 (2007)

  41. M. He, W. Zhang, X. Zhang, A displacement sensor of dual-light based on FPGA. Optoelectron. Lett. 3, 294–298 (2007)

    Article  ADS  Google Scholar 

  42. K.H. Kim, S.Y. Lee, S. Kim, S.G. Jeong, DNA microarray scanner with a DVD pick-up head. Curr. Appl. Phys. 8, 687–691 (2008)

    Article  ADS  Google Scholar 

  43. S.H. Wang, C.J. Tay, C. Quan, H.M. Shang, Z.F. Zhou, Laser integrated measurement of surface roughness and micro-displacement. Meas. Sci. Technol. 11, 454–458 (2000)

    Article  ADS  Google Scholar 

  44. A. Weiss, A. Obotnine, A. Lasinski, Method and apparatus for the auto-focussing infinity corrected microscopes, U.S. Patent 7700903 (2010)

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC 100-2218-E-194-008. The authors would like to express their thanks to Mr. Yu-Hsiu Chang of the Laser Application Technology Center, Industrial Technology Research Institute, Taiwan, for his technological assistance throughout the course of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CS., Hu, PH. & Lin, YC. Design and experimental validation of novel optics-based autofocusing microscope. Appl. Phys. B 109, 259–268 (2012). https://doi.org/10.1007/s00340-012-5171-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5171-x

Keywords

Navigation