Applied Physics B

, Volume 110, Issue 2, pp 223–231 | Cite as

Using integrating spheres with wavelength modulation spectroscopy: effect of pathlength distribution on 2nd harmonic signals

Article

Abstract

We have studied the effect on 2nd harmonic wavelength modulation spectroscopy of the use of integrating spheres as multipass gas cells. The gas lineshape becomes distorted at high concentrations, as a consequence of the exponential pathlength distribution of the sphere, introducing nonlinearity beyond that expected from the Beer–Lambert law. We have modelled this numerically for methane absorption at 1.651 μm, with gas concentrations in the range of 0–2.5 %vol in air. The results of this model compare well with experimental measurements. The nonlinearity for the 2fWMS measurements is larger than that for direct scan measurements; if this additional effect were not accounted for, the resulting error would be approximately 20 % of the reading at a concentration of 2.5 %vol methane.

Keywords

Modulation Index Integrate Cavity Output Spectroscopy Tunable Diode Laser Spectroscopy Ringdown Time Cavity Ringdown Spectroscopy 

Notes

Acknowledgements

This work was carried out under an EPSRC research grant (GR/T04601/01) and an EPSRC Advanced Research Fellowship (GR/T04595/01—J. Hodgkinson).

References

  1. 1.
    J.U. White, J. Opt. Soc. Am. 32, 285 (1942) ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964) ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Chernin, E.G. Barskaya, Appl. Opt. 30, 51 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    E. Hawe, P. Chambers, C. Fitzpatrick, E. Lewis, Meas. Sci. Technol. 18, 3187 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, E. Lewis, Sens. Actuators A, Phys. 141, 414 (2008) CrossRefGoogle Scholar
  8. 8.
    C.G. Venkatesh, R.S. Eng, A.W. Mantz, Appl. Opt. 19, 1704 (1980) ADSCrossRefGoogle Scholar
  9. 9.
    R.M. Abdullin, A.V. Lebedev, Sov. J. Opt. Technol. 55, 139 (1988) Google Scholar
  10. 10.
    S. Tranchart, I.H. Bachir, J.-L. Destombes, Appl. Opt. 35, 7070 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    H.I. Schiff, G.I. Mackay, J. Bechara, in Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York, 1994), Chap. 5 Google Scholar
  12. 12.
    D. Masiyano, J. Hodgkinson, R.P. Tatam, Appl. Phys. B 100, 303 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    P. Elterman, Appl. Opt. 9, 2140 (1970) ADSCrossRefGoogle Scholar
  14. 14.
    E.S. Fry, J. Musser, G.W. Kattawar, P.-W. Zhai, Appl. Opt. 45, 9053 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    J. Hodgkinson, D. Masiyano, R.P. Tatam, Appl. Opt. 48, 5748 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Khan, K.D. Mohan, A.N. Dharamsi, Proc. SPIE 6378, 63780C (2006) ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Ingle, S.R. Crouch, Spectrochemical Analysis (Prentice Hall, Englewood Cliffs, 1988) Google Scholar
  18. 18.
    L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 60, 711 (1998) CrossRefGoogle Scholar
  19. 19.
    P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965) ADSCrossRefGoogle Scholar
  21. 21.
    L.M. Manojlovíc, A.S. Marinčíc, Meas. Sci. Technol. 22, 075303 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    E.S. Fry, G.W. Kattawar, B.D. Strycker, P.-W. Zhai, Appl. Opt. 49, 575 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    O. Axner, P. Kluczynski, A.M. Lindberg, J. Quant. Spectrosc. Radiat. Transf. 68, 299 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    A. Hangauer, J. Chen, M.-C. Amann, Appl. Phys. B 90, 249 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.E. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    Parametric Technology Corporation, Mathcad v. 14.0. PTC Inc., Needham (2007) Google Scholar
  27. 27.
    J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B 100, 417 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Engineering Photonics, School of EngineeringCranfield UniversityBedfordshireUK
  2. 2.Two Trees Photonics Ltd.Milton KeynesUK

Personalised recommendations