Advertisement

Applied Physics B

, Volume 110, Issue 2, pp 263–269 | Cite as

Application of a cw quantum cascade laser CO2 analyser to catalytic oxidation reaction monitoring

  • V. L. Kasyutich
  • D. Poulidi
  • M. Jalil
  • I. S. Metcalfe
  • P. A. MartinEmail author
Article

Abstract

Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm−1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10−4.

Keywords

Quantum Cascade Laser Oxygen Mole Fraction External Cavity Quantum Cascade Laser Pulse Quantum Cascade Laser Tunable Infrared Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC) project EP/G022933/1.

References

  1. 1.
    G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Chem. Soc. Rev. 34, 921 (2005) CrossRefGoogle Scholar
  2. 2.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Appl. Phys. B, Lasers Opt. 90, 165 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, D.E. Glenn, R.M. McGovern, Appl. Phys. B, Lasers Opt. 92, 387 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    V. Zeninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, G. Durry, Appl. Phys. B, Lasers Opt. 85, 265 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    T.H. Risby, F.K. Tittel, Opt. Eng. 49, 111123 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    V.L. Kasyutich, R.J. Holdsworth, P.A. Martin, J. Phys. Conf. Ser. 157, 012006 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    J.B. McManus, D.D. Nelson, M.S. Zahniser, Isot. Environ. Health Stud. 46, 49 (2010) CrossRefGoogle Scholar
  8. 8.
    G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, D. Weidmann, Opt. Eng. 49, 111121 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    G.N. Rao, A. Karpf, Appl. Opt. 50, A100 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    V.L. Kasyutich, R.K. Raja Ibrahim, P.A. Martin, Infrared Phys. Technol. 53, 381 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    V.L. Kasyutich, P.A. Martin, Opt. Commun. 284, 5723 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    V.L. Kasyutich, P.A. Martin, Infrared Phys. Technol. 55, 60 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    V.L. Kasyutich, P.A. Martin, Sens. Actuators B, Chem. 157, 635 (2011) CrossRefGoogle Scholar
  14. 14.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    M. Tsampas, F. Sapountzi, C. Vayenas, Catal. Today 146, 351 (2009) CrossRefGoogle Scholar
  16. 16.
    A. Wootsch, C. Descorme, S. Rousselet, D. Duprez, C. Templier, Appl. Surf. Sci. 253, 1310 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    C. Xia, C. Falgairette, Y. Li, G. Foti, C. Comninellis, W. Harbich, Appl. Catal. B, Environ. (2012). doi: 10.1016/j.apcatb.2011.11.044 Google Scholar
  18. 18.
    V.L. Kasyutich, A. McMahon, T. Barnhart, P.A. Martin, Appl. Phys. B, Lasers Opt. 93, 701 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    S. Welzel, G. Lombardi, P.B. Davies, R. Engeln, D.C. Schram, J. Ropcke, J. Appl. Phys. 104, 093115 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    J.B. McManus, M.S. Zahniser, D.D. Nelson Jr., J.H. Shorter, S. Herndon, E. Wood, R. Wehr, Opt. Eng. 49, 111124 (2010). doi: 10.1117/1.3498782 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • V. L. Kasyutich
    • 1
  • D. Poulidi
    • 2
  • M. Jalil
    • 2
  • I. S. Metcalfe
    • 2
  • P. A. Martin
    • 1
    Email author
  1. 1.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  2. 2.School of Chemical Engineering and Advanced Materials, Metz CourtNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations