Skip to main content
Log in

Oxygen concentration effects on laser-induced grating spectroscopy of toluene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effects of variation in oxygen concentration on laser-induced grating spectroscopy (LIGS) signals from toluene vapour in nitrogen/oxygen mixtures is investigated. The modulation of LIGS signals arising from the interference of counter-propagating acoustic waves with a stationary density perturbation induced by pulsed excitation of toluene by frequency quadrupled radiation from a Nd:YAG laser has been measured as a function of oxygen partial pressure at total gas pressures up to 8 bar. The modulation depth or signal contrast is found to vary in an unexpected way with oxygen partial pressure and the behaviour is ascribed to energy transfer to excited singlet states of the oxygen molecule and subsequent collisional quenching. A simple model of the energy transfer dynamics is presented that reproduces the observed behaviour and the potential for using the signal contrast of LIGS signals as a measure of oxygen concentration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.J. Eichler, P. Gunter, D.W. Pohl, Laser-induced dynamic gratings (Springer, Berlin, 1986)

    Google Scholar 

  2. S. Williams, L.A. Rahn, P.H. Paul, J.W. Forsman, R.N. Zare, Optics Letters 19, 1681–1683 (1994)

    Article  ADS  Google Scholar 

  3. E.B. Cummings, Optics Letters 19, 1361–1363 (1994)

    Article  ADS  Google Scholar 

  4. P.H. Paul, R.L. Farrow, P.M. Danehy, Journal of the Optical Society of America B 12, 384–392 (1995)

    Article  ADS  Google Scholar 

  5. H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G.M. Lloyd, P. Ewart, Applied Physics B 67, 667–673 (1998)

    Article  Google Scholar 

  6. D.J.W. Walker, R.B. Williams, P. Ewart, Optics Letter 23, 1316 (1998)

    Article  ADS  Google Scholar 

  7. W. Hubschmid, B. Hemmerling, A. Stampanoni-Panariello, Journal of the Optical Society of America B 12, 1850–1854 (1995)

    Article  ADS  Google Scholar 

  8. S. Schlamp, T.H. Sobota, Experiments in Fluids 32, 683e8 (2002)

    Google Scholar 

  9. T. Seeger, J. Kiefer, M.C. Weikl, A. Leipertz, D.N. Kozlov, Optics Express 14, 12994–13000 (2006)

    Article  ADS  Google Scholar 

  10. J. Kiefer, D.N. Kozlov, T. Seeger, A. Leipertz, Journal of Raman Spectroscopy 39, 711–721 (2008)

    Article  ADS  Google Scholar 

  11. R. Stevens, P. Ewart, Applied Physics B 78, 111–117 (2004)

    Article  Google Scholar 

  12. J. Kiefer, P. Ewart, Progress in Energy and Combustion Science 37, 525–564 (2011)

    Article  Google Scholar 

  13. C. Schulz, V. Sick, Progress in Energy and Combustion Science 31, 75–121 (2005)

    Article  Google Scholar 

  14. A.C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach, New York, 1996)

    Google Scholar 

  15. K. Kohse-Höinghaus, Progress in Energy and Combustion Science 20, 203–279 (1994)

    Article  Google Scholar 

  16. K.C. Smyth, D.R. Crosley, in Applied combustion diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor and Francis, New York, 2002)

    Google Scholar 

  17. S. Schlamp, H.G. Hornung, E.B. Cummings, Measurement Science and Technology 11, 784 (2000)

    Article  ADS  Google Scholar 

  18. B. Hemmerling, D.N. Kozlov, Applied Optics 38, 1001 (1999)

    Article  ADS  Google Scholar 

  19. W. Hubschmid, B. Hemmerling, Chemical Physics 259, 109 (2000)

    Article  ADS  Google Scholar 

  20. W. Hubschimd, Applied Physics B 94, 345–353 (2009)

    Article  Google Scholar 

  21. A.J. Grant, P. Ewart, C.R. Stone, Applied Physics B 74, 105–110 (2002)

    Article  Google Scholar 

  22. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Physical Chemistry Chemical Physics 6, 2940–2945 (2004)

    Article  Google Scholar 

  23. F.P. Zimmermann, W. Koban, C.M. Roth, D.-P. Herten, C. Schulz, Chemical Physics Letters 426, 248–251 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Engineering and Physical Sciences Research Council (UK) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B., Ewart, P. Oxygen concentration effects on laser-induced grating spectroscopy of toluene. Appl. Phys. B 109, 317–325 (2012). https://doi.org/10.1007/s00340-012-5149-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5149-8

Keywords

Navigation