Line shapes of near-infrared DFB and VCSEL diode lasers under the influence of system back reflections

Abstract

Laser diode line widths and line shapes are experimentally investigated in dependence on the diode current and on back reflections from an optical system. Four distributed-feedback (DFB)-type diode lasers and two vertical-cavity surface-emitting lasers (VCSELs) have been tested within the same optical setup and using the same fitting methods. System back reflection ratios of light reflected back to the laser have been varied between −1 dB and −45 dB and were below −60 dB when all reflections were blocked. The background of this investigation is the evaluation of different laser types with respect to their suitability for sensor applications in which optical back reflections may occur, for example tunable diode-laser spectroscopy (TDLS). While DFB-type lasers showed almost pure Lorentzian line shapes and line widths of a few MHz, the tested VCSELs had a strong Gaussian contribution to the line shape, indicating stronger 1/f noise, which was also observed in the relative intensity noise of these particular lasers. System reflection ratios above −25 dB had strong effects on the line width in both DFB diode lasers and VCSELs, while some influences have been observed at even lower reflection ratios for DFB diode lasers. As much smaller reflection ratios are typically required in TDLS systems to avoid etalon-like fringes and self-mixing interference effects, we conclude that the influence on the line width is not the most important reason to minimize back reflections in practical TDLS systems or to choose one type of diode laser over the other.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A.W. Mantz, Spectrochim. Acta, Part A 51, 2211 (1995)

    ADS  Article  Google Scholar 

  2. 2.

    M. Lackner, Rev. Chem. Eng. 23, 65 (2007)

    Article  Google Scholar 

  3. 3.

    A. Lytkine, B. Lau, A. Lim, W. Jäger, J. Tulip, Appl. Phys. B 90, 339 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    U. Minoni, L. Rovati, F. Docchio, Rev. Sci. Instrum. 69, 3992 (1998)

    ADS  Article  Google Scholar 

  5. 5.

    J.P. von der Weid, R. Passy, G. Mussi, N. Gisin, J. Lightwave Technol. 15, 1131 (1997)

    ADS  Article  Google Scholar 

  6. 6.

    K. Iiyama, S. Matsui, T. Kobayashi, T. Maruyama, IEEE Photonics Technol. Lett. 23, 703 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    E.M. Strzelecki, D.A. Cohen, L.A. Coldren, J. Lightwave Technol. 6, 1610 (1988)

    ADS  Article  Google Scholar 

  8. 8.

    J. Buus, M.-C. Amann, D.J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, New York, 2005)

    Google Scholar 

  9. 9.

    A. Villafranca, J. Lasobras, J.A. Lázaro, I. Garcés, IEEE J. Quantum Electron. 43, 116 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    G.P. Agrawal, IEEE Photonics Technol. Lett. 1, 212 (1989)

    ADS  Article  Google Scholar 

  11. 11.

    D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  12. 12.

    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1991)

    Google Scholar 

  13. 13.

    R.W. Tkach, A.R. Chraplyvy, J. Lightwave Technol. 4, 1655 (1986)

    ADS  Article  Google Scholar 

  14. 14.

    T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980)

    ADS  Article  Google Scholar 

  15. 15.

    P. Gallion, G. Debarge, IEEE J. Quantum Electron. 4, 343 (1984)

    ADS  Article  Google Scholar 

  16. 16.

    R. Tkach, A. Chraplyvy, J. Lightwave Technol. 4, 1711 (1986)

    ADS  Article  Google Scholar 

  17. 17.

    L. Mercer, J. Lightwave Technol. 9, 485 (1991)

    ADS  Article  Google Scholar 

  18. 18.

    G. Stéphan, T. Tam, S. Blin, P. Besnard, M. Têtu, Phys. Rev. A 71, 1 (2005)

    Article  Google Scholar 

  19. 19.

    M. Nazarathy, W. Sorin, D. Baney, J. Lightwave Technol. 7, 1083 (1989)

    ADS  Article  Google Scholar 

  20. 20.

    K. Kikuchi, IEEE J. Quantum Electron. 25, 684 (1989)

    ADS  Article  Google Scholar 

  21. 21.

    C. Henry, IEEE J. Quantum Electron. 18, 259 (1982)

    ADS  Article  Google Scholar 

  22. 22.

    F. Schreier, J. Quant. Spectrosc. Radiat. Transf. 48, 743 (1992)

    ADS  Article  Google Scholar 

  23. 23.

    J. Weidemann, J. Numer. Anal. 31, 1497 (1994)

    Article  Google Scholar 

  24. 24.

    T.F. Coleman, Y. Li, Math. Program. 67, 189 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    T.F. Coleman, Y. Li, Optimization 6, 418 (1996)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    M. Kamp, J. Hofmann, A. Forchel, F. Schaefer, J.P. Reithmaier, Appl. Phys. Lett. 74, 483 (1998)

    ADS  Article  Google Scholar 

  27. 27.

    J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectrochim. Acta, Part A 60, 3243 (2004)

    ADS  Article  Google Scholar 

  28. 28.

    W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 10, 2492 (2010)

    Article  Google Scholar 

  29. 29.

    S. Kakimoto, K. Takagi, H. Watanabe, H. Higuchi, J. Appl. Phys. 84, 1820 (1998)

    ADS  Article  Google Scholar 

  30. 30.

    M. Sugo, H. Suzuki, Y. Kondo, NTT Tech. Rev. 3, 12 (2005)

    Google Scholar 

  31. 31.

    M. Möhrle, A. Sigmund, A. Dounia, L. Mörl, IEEE Photonics Technol. Lett. 18, 962 (2006)

    ADS  Article  Google Scholar 

  32. 32.

    R. Shau, M. Ortsiefer, J. Rosskopf, G. Bohm, F. Kohler, M.-C. Amann, Electron. Lett. 37, 1295 (2001)

    Article  Google Scholar 

  33. 33.

    M. Ortsiefer, S. Baydar, K. Windhorn, G. Böhm, J. Rosskopf, R. Shau, E. Rönneberg, W. Hofmann, M.-C. Amann, IEEE Photonics Technol. Lett. 17, 1596 (2005)

    ADS  Article  Google Scholar 

  34. 34.

    S. Viciani, M. Gabrysch, F. Marin, F. Monti di Sopra, M. Moser, K.H. Gulden, Opt. Commun. 206, 89 (2002)

    ADS  Article  Google Scholar 

  35. 35.

    Y.C. Chung, Y.H. Lee, IEEE Photonics Technol. Lett. 3, 597 (1991)

    ADS  Article  Google Scholar 

  36. 36.

    R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

    ADS  Article  Google Scholar 

  37. 37.

    D. Vujanic, W. Jaeger, J. Tulip, Appl. Phys. B 99, 585 (2010)

    ADS  Article  Google Scholar 

  38. 38.

    D. Masiyano, J. Hodgkinson, S. Schilt, R.P. Tatam, Appl. Phys. B 96, 863 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Engelbrecht.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Engelbrecht, R., Lins, B., Zinn, P. et al. Line shapes of near-infrared DFB and VCSEL diode lasers under the influence of system back reflections. Appl. Phys. B 109, 441–452 (2012). https://doi.org/10.1007/s00340-012-5097-3

Download citation

Keywords

  • Line Width
  • Intensity Noise
  • Relative Intensity Noise
  • Back Reflection
  • Spectral Line Width