Electronic detection of a single particle in a coplanar-waveguide Penning trap

Abstract

We present a detailed model of the electronic detection of a single particle in a coplanar-waveguide Penning trap. The detection signal is the electric current induced upon the trap’s surface by the charged particle’s motion. In contrast to three-dimensional hyperbolic or cylindrical traps, the cyclotron and magnetron motions can be detected, excited or coupled to the axial motion without segmenting any of the trap’s electrodes. We calculate the effective coupling displacement for different electrodes. This determines the detection signal and resistive cooling time constant for each component of the ion’s motion. We discuss the practical implementation of the electronic detection for a single electron and a single proton.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    S. Stahl, F. Galve, J. Alonso, S. Djekić, W. Quint, T. Valenzuela, J. Verdú, M. Vogel, G. Werth, Eur. Phys. J. D 32, 139 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    J.R. Castrejón-Pita, R.C. Thompson, Phys. Rev. A 72, 013405 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    J. Goldman, G. Gabrielse, Phys. Rev. A 81, 052335 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. Lett. 91, 017901 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    D. Porras, J.I. Cirac, Phys. Rev. Lett. 96, 250501 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    J.M. Taylor, T. Calarco, Phys. Rev. A 78, 062331 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    L. Lamata, D. Porras, J.I. Cirac, J. Goldman, G. Gabrielse, Phys. Rev. A 81, 022301 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 78, 012338 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 82, 044302 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    F. Galve, P. Fernández, G. Werth, Eur. Phys. J. D 40, 201 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Eur. Phys. J. D 50, 97 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    J. Verdú, New J. Phys. 13, 113029 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    C.P. Wen, IEEE Trans. Microw. Theory Tech. 17, 1087 (1969)

    ADS  Article  Google Scholar 

  14. 14.

    A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)

    ADS  Article  Google Scholar 

  15. 15.

    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature (London) 431, 162 (2004)

    ADS  Article  Google Scholar 

  16. 16.

    J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    A. André, D. DeMille, J.M. Doyle, M.D. Lukin, P. Rabl, R.J. Schoelkopf, P. Zoller, Nat. Phys. 2, 636 (2006)

    Article  Google Scholar 

  18. 18.

    D.I. Schuster, L.S. Bishop, I.L. Chuang, D. DeMille, R.J. Schoelkopf, Phys. Rev. A 83, 012311 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    H.G. Dehmelt, F.L. Walls, Phys. Rev. Lett. 21, 127 (1968)

    ADS  Article  Google Scholar 

  20. 20.

    D.J. Wineland, H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975)

    ADS  Article  Google Scholar 

  21. 21.

    J. Verdú, S. Djekic, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, T. Beier, H.-J. Kluge, W. Quint, Phys. Rev. Lett. 92, 093002 (2004)

    ADS  Article  Google Scholar 

  22. 22.

    H.G. Dehmelt, Proc. Natl. Acad. Sci. USA 83, 2291 (1986)

    ADS  Article  Google Scholar 

  23. 23.

    R.N. Simons, R.K. Arora, IEEE Trans. Microw. Theory Tech. 30, 1094 (1982)

    ADS  Article  Google Scholar 

  24. 24.

    B.C. Wadell, Transmission Line Design Handbook (Artech House, Norwood, 1991)

    Google Scholar 

  25. 25.

    M. Kretzschmar, Int. J. Mass Spectrom. 275, 21 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    M. Breitenfeldt, S. Baruah, K. Blaum, A. Herlert, M. Kretzschmar, F. Martinez, G. Marx, L. Schweikhard, N. Walsh, Int. J. Mass Spectrom. 275, 34 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    S. Stahl, Ph.D. Thesis. Johannes Gutenberg-Universität Mainz, Germany (1998)

  28. 28.

    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 2005)

    Google Scholar 

  29. 29.

    W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Phys. Scr. T 59, 106 (1995)

    ADS  Article  Google Scholar 

  30. 30.

    G. Gabrielse, Phys. Rev. A 29, 462 (1984)

    ADS  Article  Google Scholar 

  31. 31.

    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    ADS  Article  Google Scholar 

  32. 32.

    X. Feng, M. Charlton, M. Holzscheiter, R.A. Lewis, Y. Yamazaki, J. Appl. Phys. 79, 8 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    S. Ulmer, H. Kracke, K. Blaum, S. Kreim, A. Mooser, W. Quint, C.C. Rodegheri, J. Walz, Rev. Sci. Instrum. 80, 123302 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    S.R. Jefferts, T. Heavner, P. Hayes, G.H. Dunn, Rev. Sci. Instrum. 64, 737 (1993)

    ADS  Article  Google Scholar 

  35. 35.

    H. Häffner, T. Beier, S. Djekic, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, T. Valenzuela, G. Werth, Eur. Phys. J. D 22, 163 (2003)

    ADS  Article  Google Scholar 

  36. 36.

    E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Phys. Rev. A 41, 312 (1990)

    ADS  Article  Google Scholar 

  37. 37.

    S. Ulmer, C.C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, J. Walz, Phys. Rev. Lett. 106, 253001 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    G. Gabrielse, J. Tan, J. Appl. Phys. 63, 5143 (1988)

    ADS  Article  Google Scholar 

  39. 39.

    H. Häffner, T. Beier, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 85, 5308 (2000)

    ADS  Article  Google Scholar 

  40. 40.

    K. Blaum, Phys. Rep. 425, 1 (2006)

    ADS  Article  Google Scholar 

  41. 41.

    S. Djekic, J. Alonso, H.-J. Kluge, W. Quint, S. Stahl, T. Valenzuela, J. Verdú, M. Vogel, G. Werth, Eur. Phys. J. D 31, 451 (2004)

    ADS  Article  Google Scholar 

  42. 42.

    L. Frunzio, A. Wallraff, D. Schuster, J. Majer, R. Schoelkopf, IEEE Trans. Appl. Supercond. 15, 860 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from EPSRC, under grant EP/I012850/1, from the Marie Curie reintegration grant “NGAMIT” and from SEPnet.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Verdú.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al-Rjoub, A., Verdú, J. Electronic detection of a single particle in a coplanar-waveguide Penning trap. Appl. Phys. B 107, 955–964 (2012). https://doi.org/10.1007/s00340-012-5069-7

Download citation

Keywords

  • Electronic Detection
  • Trap Particle
  • Cyclotron Motion
  • Tuning Ratio
  • Small Trap