Advertisement

Applied Physics B

, Volume 107, Issue 4, pp 1097–1104 | Cite as

Suitability of linear quadrupole ion traps for large Coulomb crystals

  • D. A. Tabor
  • V. Rajagopal
  • Y.-W. Lin
  • B. OdomEmail author
Article

Abstract

Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of different nonlinear heating resonances. In the anharmonicity point of comparison, we find significant differences between the trap designs, with an original rotated-endcap trap performing better than the conventional in-line endcap trap.

Keywords

Trapping Potential Secular Frequency Normal Mode Frequency Trap Design Linear Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully thank Caroline Champenois, Eric Hudson, David Kielpinski, Joan Marler, Steven Schowalter, and Stephan Schiller for sharing their expertise in illuminating discussions. This work is sponsored by NSF Grant No. PHY-0847748 and by NSF IGERT Grant No. 0801685.

References

  1. 1.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Prestage, G.J. Dick, L. Maleki, J. Appl. Phys. 66, 1013 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    J.C.J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, S. Schiller, Phys. Rev. Lett. 98, 173002 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    H. Haffner, W. Hansel, C.F. Roos, J. Benhelm, D.C. Alkar, M. Chwalla, T. Korber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Guhne, W. Dur, R. Blatt, Nature 438, 643 (2005). ISSN 0028-0836 ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Hume, T. Rosenband, D.J. Wineland, Phys. Rev. Lett. 99, 120502 (2007). ISSN 0031-9007 ADSCrossRefGoogle Scholar
  7. 7.
    P.F. Herskind, A. Dantan, J.P. Marler, M. Albert, M. Drewsen, Nat. Phys. 5, 494 (2009). ISSN 1745-2473 CrossRefGoogle Scholar
  8. 8.
    S. Willitsch, M.T. Bell, A.D. Gingell, T.P. Softley, Phys. Chem. Chem. Phys. 10, 7200 (2008) CrossRefGoogle Scholar
  9. 9.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    M. Drewsen, C. Brodersen, L. Hornekær, J.S. Hangst, J.P. Schiffer, Phys. Rev. Lett. 81, 2878 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    S. Removille, R. Dubessy, B. Dubost, Q. Glorieux, T. Coudreau, S. Guibal, J.-P. Likforman, L. Guidoni, J. Phys. B, At. Mol. Opt. Phys. 42, 154014 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    P. Blythe, B. Roth, U. Fröhlich, H. Wenz, S. Schiller, Phys. Rev. Lett. 95, 183002 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    K. Mølhave, M. Drewsen, Phys. Rev. A 62, 011401 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    D. Kielpinski, private communication (2010) Google Scholar
  15. 15.
    N.W. McLachlan, Theory and Application of Mathieu Functions, 1st edn. (Clarendon Press, Oxford, 1947) zbMATHGoogle Scholar
  16. 16.
    H.G. Dehmelt, Adv. At. Mol. Opt. Phys. 3, 53 (1967) Google Scholar
  17. 17.
    J. Pedregosa, C. Champenois, M. Houssin, M. Knoop, Int. J. Mass Spectrom. 290, 100 (2010). ISSN 1387-3806 ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Reuben, G.B. Smith, P. Moses, A.V. Vagov, M.D. Woods, D.B. Gordon, R.W. Munn, Int. J. Mass Spectrom. Ion Process. 154, 43 (1996). ISSN 0168-1176 ADSCrossRefGoogle Scholar
  19. 19.
    C. Geuzaine, J.-F. Remacle, Int. J. Numer. Methods Eng. 79, 1309 (2009). ISSN 1097-0207 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Dover printing, 10th GPO printing (Dover, New York, 1964) zbMATHGoogle Scholar
  21. 21.
    J.P. Schiffer, M. Drewsen, J.S. Hangst, L. Hornekær, Proc. Natl. Acad. Sci. USA 97, 10697 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    V.L. Ryjkov, X. Zhao, H.A. Schuessler, Phys. Rev. A, Gen. Phys. 71, 033414 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    A. Drakoudis, M. Söllner, G. Werth, Int. J. Mass Spectrom. 252, 61 (2006). ISSN 1387-3806 ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Franzen, K.P. Wanczek, Int. J. Mass Spectrom. Ion Process. 124, 125 (1993). ISSN 0168-1176 ADSCrossRefGoogle Scholar
  25. 25.
    R. Alheit, S. Kleineidam, F. Vedel, M. Vedel, G. Werth, Int. J. Mass Spectrom. Ion Process. 154, 155 (1996). ISSN 0168-1176 ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998) CrossRefGoogle Scholar
  27. 27.
    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999). ISSN 0034-6861 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • D. A. Tabor
    • 1
  • V. Rajagopal
    • 1
  • Y.-W. Lin
    • 1
  • B. Odom
    • 1
    Email author
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations