Skip to main content
Log in

Over 200 W average power tunable Raman amplifier based on fused silica step index fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A high-power tunable Raman Amplifier is presented. The seed signal (varying from 1118 nm to 1130 nm in wavelength) was generated in a tunable Raman oscillator and fed into the Raman amplification stage. A conversion efficiency of up to 86 % was achieved and a maximum output power of over 200 W was measured. The Raman gain coefficient for the amplifier fiber was measured to be 0.76×10−14 m/W. Furthermore, the measured output power was compared with values obtained from simple mathematical model and a good agreement up to the highest output power of amplified signal was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Tuennermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, J. Limpert, J. Phys. B, At. Mol. Opt. Phys. 38, S681 (2005)

    Article  ADS  Google Scholar 

  2. J. Limpert, F. Roeser, S. Klingebiel, T. Schreiber, Ch. Wirth, T. Peschel, R. Eberhardt, A. Tuennermann, IEEE J. Sel. Topics Quantum Electron. 13, 537 (2007)

    Article  Google Scholar 

  3. D.J. Richardson, J. Nilsson, W.A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010)

    Article  Google Scholar 

  4. M.L. Osowski, W. Hu, R.M. Lammert, S.W. Oh, P.T. Rudy, T. Stakelon, L. Vaissie, J.E. Ungar, Proc. SPIE 6952, 695208 (2008)

    Article  Google Scholar 

  5. E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, U.S. Patent 4,815,079, 1989

  6. L. Zenteno, J. Lightwave Technol. 11, 1435 (1993)

    Article  ADS  Google Scholar 

  7. M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. Walton, L. Zenteno, J. Lightwave Technol. 27, 3010 (2009)

    Article  ADS  Google Scholar 

  8. C.B. Olausson, A. Shirakawa, M. Chen, J.K. Lyngsø, J. Broeng, K.P. Hansen, A. Bjarklev, K. Ueda, Opt. Express 18, 16345 (2010)

    Article  ADS  Google Scholar 

  9. M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, J. Maran, Proc. SPIE 7195, 71951U (2009)

    Article  Google Scholar 

  10. R.H. Stolen, E.P. Ippen, Appl. Phys. Lett. 22, 276 (1973)

    Article  ADS  Google Scholar 

  11. V.E. Perlin, H.G. Winful, J. Lightwave Technol. 20, 250 (2002)

    Article  ADS  Google Scholar 

  12. D. Georgiev, V.P. Gapontsev, A.G. Dronov, M.Y. Vyatkin, A.B. Rulkov, S.V. Popov, J.R. Taylor, Opt. Express 13, 6772 (2005)

    Article  ADS  Google Scholar 

  13. Y. Feng, L.R. Taylor, D.B. Calia, Opt. Express 17, 23678 (2009)

    Article  ADS  Google Scholar 

  14. Y. Feng, L.R. Taylor, D.B. Calia, R. Holzloener, W. Hackenberg, in Frontiers in Optics (FiO) Postdeadline Papers I (PDPA) (2009)

    Google Scholar 

  15. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007)

    Google Scholar 

  16. M.N. Islam (ed.), Raman Amplifiers for Telecommunications 1, Physical Principles (Springer, Berlin, 2004)

    Google Scholar 

  17. R.G. Smith, Appl. Opt. 11, 2489 (1972)

    Article  ADS  Google Scholar 

  18. R.H. Stolen, in Technical Digest Symposium on Optical Fiber Measurements 2000 (NIST Special Publications 953, September 2000)

  19. Y. Kang, Calculations and measurements of Raman gain coefficients of different fiber types. Master Thesis, The Faculty of the Virginia Polytechnic Institute and State University Blacksburg, Virginia, 2002

  20. V. Ramaswamy, R. Standley, D. Sze, W.G. French, Bell Syst. Tech. J. 57, 635 (1978)

    Google Scholar 

  21. K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, Electron. Lett. 16, 768 (1980)

    Article  Google Scholar 

  22. G.D. VanWiggeren, Rajarshi Roy, Appl. Opt. 38, 3888 (1999)

    Article  ADS  Google Scholar 

  23. M.N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002)

    Article  Google Scholar 

  24. R.H. Stolen, IEEE J. Quantum Electron. 15, 1157 (1979)

    Article  ADS  Google Scholar 

  25. S. Popov, S. Sergeyev, A.T. Friberg, J. Opt. A, Pure Appl. Opt. 6, S72 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank European Commission for financial support of this work within project “LIFT” under grant agreement no. NMP2-LA-2009-228587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rekas.

Additional information

Part of the results were presented at Frontiers in Optics Conference, San Diego, October 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekas, M., Schmidt, O., Zimer, H. et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber. Appl. Phys. B 107, 711–716 (2012). https://doi.org/10.1007/s00340-012-5052-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5052-3

Keywords

Navigation