Advertisement

Applied Physics B

, Volume 110, Issue 2, pp 177–185 | Cite as

Multi-harmonic detection in wavelength modulation spectroscopy systems

  • A. HangauerEmail author
  • J. Chen
  • R. Strzoda
  • M.-C. Amann
Article

Abstract

Two multi-harmonic detection methods for wavelength modulation spectroscopy (WMS) systems are presented and compared. The two possibilities discussed in this paper are: simultaneous curve fitting of multiple harmonic spectra, and reconstruction of the transmission from harmonic coefficients. The optimum number of harmonics is four and 25 harmonics, respectively. Compared with standard single-harmonic curve fitting, the methods give about a factor of 3 better performance than standard second-harmonic curve fitting. Concluding, multi-harmonic detection is better than single-harmonic detection and should be used if the system bandwidth is high enough to allow for proper detection of the higher harmonics.

Keywords

Absorption Line Peak Absorbance Harmonic Coefficient Harmonic Spectrum Wavelength Modulation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Reid, D. Labrie, Appl. Phys. B, Lasers Opt. 26, 203 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965) ADSCrossRefGoogle Scholar
  3. 3.
    J. Liu, J. Jeffries, R. Hanson, Appl. Phys. B, Lasers Opt. 78, 503 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta, Part B, At. Spectrosc. 56, 1277 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Kosterev, Y. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307, 343 (1999) CrossRefGoogle Scholar
  7. 7.
    J.A. Silver, D.S. Bomse, Wavelength modulation spectroscopy with multiple harmonic detection. Patent US6356350 (1999) Google Scholar
  8. 8.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions, 9th edn. (Dover, New York, 1970) Google Scholar
  9. 9.
    J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B, Lasers Opt. 102, 381 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analysis (Oxford University Press, London, 1968) Google Scholar
  11. 11.
    T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B, Lasers Opt. 90, 345 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. B, Lasers Opt. 100, 331 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, IEEE J. Sel. Top. Quantum Electron. 17, 1584 (2011) CrossRefGoogle Scholar
  14. 14.
    T. Iguchi, J. Opt. Soc. Am. B, Opt. Phys. 3, 419 (1986) ADSCrossRefGoogle Scholar
  15. 15.
    J. Saarela, J. Toivonen, A. Manninen, T. Sorvajärvi, R. Hernberg, Appl. Opt. 48, 743 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    A. Hangauer, J. Chen, M.-C. Amann, Appl. Phys. B 90, 249 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Dharamsi, J. Phys. D, Appl. Phys. 29, 540 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Hangauer
    • 1
    • 2
    Email author
  • J. Chen
    • 1
  • R. Strzoda
    • 2
  • M.-C. Amann
    • 1
  1. 1.Walter Schottky InstituteTechnical University of MunichGarchingGermany
  2. 2.Siemens Corporate Research & TechnologiesSiemens AGMunichGermany

Personalised recommendations