# Multi-harmonic detection in wavelength modulation spectroscopy systems

Article

First Online:

- 516 Downloads
- 8 Citations

## Abstract

Two multi-harmonic detection methods for wavelength modulation spectroscopy (WMS) systems are presented and compared. The two possibilities discussed in this paper are: simultaneous curve fitting of multiple harmonic spectra, and reconstruction of the transmission from harmonic coefficients. The optimum number of harmonics is four and 25 harmonics, respectively. Compared with standard single-harmonic curve fitting, the methods give about a factor of 3 better performance than standard second-harmonic curve fitting. Concluding, multi-harmonic detection is better than single-harmonic detection and should be used if the system bandwidth is high enough to allow for proper detection of the higher harmonics.

## Keywords

Absorption Line Peak Absorbance Harmonic Coefficient Harmonic Spectrum Wavelength Modulation Spectroscopy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 1.J. Reid, D. Labrie, Appl. Phys. B, Lasers Opt.
**26**, 203 (1981) ADSCrossRefGoogle Scholar - 2.R. Arndt, J. Appl. Phys.
**36**, 2522 (1965) ADSCrossRefGoogle Scholar - 3.J. Liu, J. Jeffries, R. Hanson, Appl. Phys. B, Lasers Opt.
**78**, 503 (2004) ADSCrossRefGoogle Scholar - 4.P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta, Part B, At. Spectrosc.
**56**, 1277 (2001) ADSCrossRefGoogle Scholar - 5.A.A. Kosterev, Y. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett.
**27**, 1902 (2002) ADSCrossRefGoogle Scholar - 6.A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett.
**307**, 343 (1999) CrossRefGoogle Scholar - 7.J.A. Silver, D.S. Bomse, Wavelength modulation spectroscopy with multiple harmonic detection. Patent US6356350 (1999) Google Scholar
- 8.M. Abramowitz, I.A. Stegun (eds.),
*Handbook of Mathematical Functions*, 9th edn. (Dover, New York, 1970) Google Scholar - 9.J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B, Lasers Opt.
**102**, 381 (2010) ADSCrossRefGoogle Scholar - 10.L. Fox, I.B. Parker,
*Chebyshev Polynomials in Numerical Analysis*(Oxford University Press, London, 1968) Google Scholar - 11.T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B, Lasers Opt.
**90**, 345 (2008) ADSCrossRefGoogle Scholar - 12.J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. B, Lasers Opt.
**100**, 331 (2010) ADSCrossRefGoogle Scholar - 13.A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, IEEE J. Sel. Top. Quantum Electron.
**17**, 1584 (2011) CrossRefGoogle Scholar - 14.T. Iguchi, J. Opt. Soc. Am. B, Opt. Phys.
**3**, 419 (1986) ADSCrossRefGoogle Scholar - 15.J. Saarela, J. Toivonen, A. Manninen, T. Sorvajärvi, R. Hernberg, Appl. Opt.
**48**, 743 (2009) ADSCrossRefGoogle Scholar - 16.A. Hangauer, J. Chen, M.-C. Amann, Appl. Phys. B
**90**, 249 (2008) ADSCrossRefGoogle Scholar - 17.A.N. Dharamsi, J. Phys. D, Appl. Phys.
**29**, 540 (1996) ADSCrossRefGoogle Scholar

## Copyright information

© Springer-Verlag 2012