Applied Physics B

, Volume 107, Issue 3, pp 849–860 | Cite as

CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

Article

Abstract

A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′=1←v″=0) and (v′=2←v″=1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100–2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″=0, R(12) and v″=1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″=0, P(20) and v″=1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies.

References

  1. 1.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005) CrossRefGoogle Scholar
  4. 4.
    R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011) CrossRefGoogle Scholar
  5. 5.
  6. 6.
    D.T. Cassidy, L.J. Bonnell, Appl. Opt. 27, 2688 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 38, 1506 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407 (2000) CrossRefGoogle Scholar
  10. 10.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005) CrossRefGoogle Scholar
  12. 12.
    X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 115201 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16, 2045 (1977) ADSCrossRefGoogle Scholar
  14. 14.
    R.K. Hanson, P.K. Falcone, Appl. Opt. 17, 2477 (1978) ADSCrossRefGoogle Scholar
  15. 15.
    M. Schoenung, R.K. Hanson, Combust. Sci. Technol. 24, 227 (1981) CrossRefGoogle Scholar
  16. 16.
    J.H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, Appl. Opt. 32, 6082 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    R. Barron-Jimenez, J.A. Caton, T.N. Anderson, R.P. Lucht, T. Walther, S. Roy, M.S. Brown, J.R. Gord, Appl. Phys. B 85, 185 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99, 353 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubman, R.M. Williams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.Y. Cho, A.M. Sergent, H.C. Liu, E.A. Whittaker, IEEE J. Quantum Elect 38, 511 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, J. Segall, Appl. Opt. 35, 4026 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    G. Birnbaum, in Adv. Chem. Phys, ed. by J.O. Hirschfelder. Intermolecular forces, vol. 12 (Interscience, New York, 1967) Google Scholar
  25. 25.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    W. Ren, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. doi:10.1002/kin.20599 (2012) Google Scholar
  27. 27.
    R.C. Millikan, D.R. White, J. Chem. Phys. 39, 3209 (1963) ADSCrossRefGoogle Scholar
  28. 28.
    J.-P. Bouanich, C. Haeusler, J. Quant. Spectrosc. Radiat. Transfer 12, 695 (1972) ADSCrossRefGoogle Scholar
  29. 29.
    P.L. Varghese, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 24, 479 (1980) ADSCrossRefGoogle Scholar
  30. 30.
    D.F. Davidson, Z. Hong, G.L. Pilla, A. Farooq, R.D. Cook, R.K. Hanson, Proc. Combust. Inst. 33, 151 (2011) CrossRefGoogle Scholar
  31. 31.
    S. Dooley, M.P. Burke, M. Chaos, Y. Stein, F.L. Dryer, V.P. Zhukov, O. Finch, J.M. Simmie, H.J. Curran, Int. J. Chem. Kinet. 42, 527 (2010) CrossRefGoogle Scholar
  32. 32.
    R.J. Kee, F.M. Ruply, J.A. Miller, Chemkin Collection (Reaction Design, Inc., San Diego, 2010) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • W. Ren
    • 1
  • A. Farooq
    • 2
  • D. F. Davidson
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Clean Combustion Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations