Skip to main content
Log in

CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′=1←v″=0) and (v′=2←v″=1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100–2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″=0, R(12) and v″=1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″=0, P(20) and v″=1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  2. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  3. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005)

    Article  Google Scholar 

  4. R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)

    Article  Google Scholar 

  5. HITRAN, http://www.cfa.harvard.edu/hitran/

  6. D.T. Cassidy, L.J. Bonnell, Appl. Opt. 27, 2688 (1988)

    Article  ADS  Google Scholar 

  7. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998)

    Article  ADS  Google Scholar 

  8. B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 38, 1506 (1999)

    Article  ADS  Google Scholar 

  9. M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407 (2000)

    Article  Google Scholar 

  10. J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000)

    Article  ADS  Google Scholar 

  11. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)

    Article  Google Scholar 

  12. X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 115201 (2009)

    Article  ADS  Google Scholar 

  13. R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16, 2045 (1977)

    Article  ADS  Google Scholar 

  14. R.K. Hanson, P.K. Falcone, Appl. Opt. 17, 2477 (1978)

    Article  ADS  Google Scholar 

  15. M. Schoenung, R.K. Hanson, Combust. Sci. Technol. 24, 227 (1981)

    Article  Google Scholar 

  16. J.H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, Appl. Opt. 32, 6082 (1993)

    Article  ADS  Google Scholar 

  17. R. Barron-Jimenez, J.A. Caton, T.N. Anderson, R.P. Lucht, T. Walther, S. Roy, M.S. Brown, J.R. Gord, Appl. Phys. B 85, 185 (2006)

    Article  ADS  Google Scholar 

  18. A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002)

    Article  ADS  Google Scholar 

  19. J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99, 353 (2010)

    Article  ADS  Google Scholar 

  20. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubman, R.M. Williams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.Y. Cho, A.M. Sergent, H.C. Liu, E.A. Whittaker, IEEE J. Quantum Elect 38, 511 (2002)

    Article  ADS  Google Scholar 

  21. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)

    Article  ADS  Google Scholar 

  22. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)

    Article  ADS  Google Scholar 

  23. V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, J. Segall, Appl. Opt. 35, 4026 (1996)

    Article  ADS  Google Scholar 

  24. G. Birnbaum, in Adv. Chem. Phys, ed. by J.O. Hirschfelder. Intermolecular forces, vol. 12 (Interscience, New York, 1967)

    Google Scholar 

  25. X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)

    Article  ADS  Google Scholar 

  26. W. Ren, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. doi:10.1002/kin.20599 (2012)

    Google Scholar 

  27. R.C. Millikan, D.R. White, J. Chem. Phys. 39, 3209 (1963)

    Article  ADS  Google Scholar 

  28. J.-P. Bouanich, C. Haeusler, J. Quant. Spectrosc. Radiat. Transfer 12, 695 (1972)

    Article  ADS  Google Scholar 

  29. P.L. Varghese, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 24, 479 (1980)

    Article  ADS  Google Scholar 

  30. D.F. Davidson, Z. Hong, G.L. Pilla, A. Farooq, R.D. Cook, R.K. Hanson, Proc. Combust. Inst. 33, 151 (2011)

    Article  Google Scholar 

  31. S. Dooley, M.P. Burke, M. Chaos, Y. Stein, F.L. Dryer, V.P. Zhukov, O. Finch, J.M. Simmie, H.J. Curran, Int. J. Chem. Kinet. 42, 527 (2010)

    Article  Google Scholar 

  32. R.J. Kee, F.M. Ruply, J.A. Miller, Chemkin Collection (Reaction Design, Inc., San Diego, 2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Combustion Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198, the Army Research Office (ARO) with Dr. Ralph Anthenien as contract monitor, and the Air Force Office of Scientific Research (AFOSR) with Dr. Julian Tishkoff as technical monitor. The authors thank Dr. Jay Jeffries for his help on the selection and specification of the lasers and acquisition of the needed support electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ren.

Appendix

Appendix

High-resolution absorption spectroscopy of the CO transition v″=1, R(22) at 2194.46 cm−1 has been recorded in high temperature shock tube experiments (0.496 % CO/1 % H2/Ar, hydrogen is added to accelerate CO vibrational relaxation). A representative line-shape for the R(22) transition at 2162 K, 1.3 atm is illustrated in Fig. 18. It is found that R(22) is blended with a weak, nearby transition v″=2, R(32) centered at 2194.44 cm−1. Our observation is also proved by fitting the absorption data using the Voigt profile as shown in Fig. 19. The one-line Voigt fit gives a peak-normalized residual of 10 %, compared to 1.8 % using the two-line Voigt fit. This unknown transition is probably coming from an isotope of CO in the mixture.

Fig. 18
figure 18

Absorption data of v″=1, R(22) taken at 2.5 kHz with 0.496 % CO/1 %⋅H2/Ar. Vibrationally equilibrated reflected shock conditions: 2162 K, 1.3 atm. A blended transition (v″=2, R(32), 0.024 cm−1 away) is observed

Fig. 19
figure 19

One-line and two-line best-fit Voigt profiles for the absorption data in Fig.18. The residual of the fits are shown in the lower panels

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Farooq, A., Davidson, D.F. et al. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm. Appl. Phys. B 107, 849–860 (2012). https://doi.org/10.1007/s00340-012-5046-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5046-1

Keywords

Navigation